23 research outputs found
Human Pose Estimation on Privacy-Preserving Low-Resolution Depth Images
Human pose estimation (HPE) is a key building block for developing AI-based
context-aware systems inside the operating room (OR). The 24/7 use of images
coming from cameras mounted on the OR ceiling can however raise concerns for
privacy, even in the case of depth images captured by RGB-D sensors. Being able
to solely use low-resolution privacy-preserving images would address these
concerns and help scale up the computer-assisted approaches that rely on such
data to a larger number of ORs. In this paper, we introduce the problem of HPE
on low-resolution depth images and propose an end-to-end solution that
integrates a multi-scale super-resolution network with a 2D human pose
estimation network. By exploiting intermediate feature-maps generated at
different super-resolution, our approach achieves body pose results on
low-resolution images (of size 64x48) that are on par with those of an approach
trained and tested on full resolution images (of size 640x480).Comment: Published at MICCAI-201
Beyond Controlled Environments: 3D Camera Re-Localization in Changing Indoor Scenes
Long-term camera re-localization is an important task with numerous computer
vision and robotics applications. Whilst various outdoor benchmarks exist that
target lighting, weather and seasonal changes, far less attention has been paid
to appearance changes that occur indoors. This has led to a mismatch between
popular indoor benchmarks, which focus on static scenes, and indoor
environments that are of interest for many real-world applications. In this
paper, we adapt 3RScan - a recently introduced indoor RGB-D dataset designed
for object instance re-localization - to create RIO10, a new long-term camera
re-localization benchmark focused on indoor scenes. We propose new metrics for
evaluating camera re-localization and explore how state-of-the-art camera
re-localizers perform according to these metrics. We also examine in detail how
different types of scene change affect the performance of different methods,
based on novel ways of detecting such changes in a given RGB-D frame. Our
results clearly show that long-term indoor re-localization is an unsolved
problem. Our benchmark and tools are publicly available at
waldjohannau.github.io/RIO10Comment: ECCV 2020, project website https://waldjohannau.github.io/RIO1
Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
Augmented Reality for Health and Safety Training Program Among Healthcare Workers: An Attempt at a Critical Review of the Literature
The aim of this research is to summarize the current knowledge regarding the application of augmented reality in occupational safety training programs, particularly in the healthcare sector. Three databases (PubMed, Scopus, Web of Science) were searched for articles published between 1992 and 2017 on health and safety training for healthcare professionals, with particular attention to the use of augmented reality; for this purpose, a search string was created. Augmented reality represents a great opportunity in the training of health workers, being able to implement the workers’ knowledge and perception of the risks. It is therefore important to have a multidisciplinary approach that manages the opportunities and risks of these new tools in a well-defined framework, increasingly taking advantage of the former and reducing the latter, to guide health care workers in adopting correct and safe behaviours that favour the reduction of injuries and occupational diseases
Beyond Controlled Environments: 3D Camera Re-localization in Changing Indoor Scenes
Long-term camera re-localization is an important task with numerous computer vision and robotics applications. Whilst various outdoor benchmarks exist that target lighting, weather and seasonal changes, far less attention has been paid to appearance changes that occur indoors. This has led to a mismatch between popular indoor benchmarks, which focus on static scenes, and indoor environments that are of interest for many real-world applications. In this paper, we adapt 3RScan – a recently introduced indoor RGB-D dataset designed for object instance re-localization – to create RIO10, a new long-term camera re-localization benchmark focused on indoor scenes. We propose new metrics for evaluating camera re-localization and explore how state-of-the-art camera re-localizers perform according to these metrics. We also examine in detail how different types of scene change affect the performance of different methods, based on novel ways of detecting such changes in a given RGB-D frame. Our results clearly show that long-term indoor re-localization is an unsolved problem. Our benchmark and tools are publicly available at https://www.waldjohannau.github.io/RIO10