5 research outputs found

    Mangrove dynamics in the southwestern Caribbean since the 'Little Ice Age': A history of human and natural disturbances

    No full text
    Relatively little is known about the long-term response of Caribbean mangroves to human and natural disturbances during the 'Little Ice Age' (LIA). We present new palynological information on the dynamics of the Bahia Honda mangrove from the eastern coast of San Andres Island in the southwestern Caribbean for the late Holocene. Major changes in the Bahia Honda pollen record show the combined effects of natural events (strong storms and sea-level rise), and human disturbances. These changes are supported by 14C dates, sedimentological and palynological information. A storm (most probably a hurricane) was recorded around AD 1600, caused sediment reworking and the subsequent loss of about 2000 years of the vegetation record. The devastation of tree vegetation by this event allowed the expansion of heliophytic vegetation (e.g. grasses and vines). Mangroves and coastal vegetation started to recover at AD 1700, reaching their maximum extent within a few decades, when microforaminifera shells became abundant at the coring site, thus suggesting a relative sea-level rise because of the geomorphic reconfiguration of the coastal plain after the storm. Furthermore, the pollen evidence indicates more humid regional climates during the late LIA (AD 1700-1850). Mangrove and coastal vegetation declined sharply as a consequence of the establishment of coconut plantations around AD 1850. The recovery of the mangroves after AD 1960 is a result of the combined effect of relative sea-level rise and drastic changes in the local economy from coconut plantations to commerce. © 2010 The Author(s)

    Predicting the distribution of Montastraea reefs using wave exposure

    No full text
    In the Caribbean region, forereef habitats dominated by Montastraea spp. have the highest biodiversity and support the largest number of ecosystem processes and services. Here we show that the distribution of this species-rich habitat can be explained by one environmental predictor: wave exposure. The relationship between wave exposure and the occurrence of Montastraea reefs was modelled using logistic regression for reefs throughout the Belize Barrier Reef, one of the largest and most topographically complex systems in the region. The model was able to predict correctly the occurrence of Montastraea reefs with an accuracy of 81%. Consistent with historical qualitative patterns, the distribution of Montastraea reefs is constrained in environments of high exposure. This pattern is likely to be driven by high rates of chronic sediment scour that constrain recruitment. The wide range of wave exposure conditions used to parameterize the model in Belize suggest that it should be transferable throughout much of the Caribbean region, constituting a fast and inexpensive alternative to traditional habitat mapping and complementing global efforts to map reef extent

    Die Antimykotica

    No full text
    corecore