42 research outputs found

    Fabrication Principles and Their Contribution to the Superior In Vivo Therapeutic Efficacy of Nano-Liposomes Remote Loaded with Glucocorticoids

    Get PDF
    We report here the design, development and performance of a novel formulation of liposome- encapsulated glucocorticoids (GCs). A highly efficient (>90%) and stable GC encapsulation was obtained based on a transmembrane calcium acetate gradient driving the active accumulation of an amphipathic weak acid GC pro-drug into the intraliposome aqueous compartment, where it forms a GC-calcium precipitate. We demonstrate fabrication principles that derive from the physicochemical properties of the GC and the liposomal lipids, which play a crucial role in GC release rate and kinetics. These principles allow fabrication of formulations that exhibit either a fast, second-order (t1/2 ∼1 h), or a slow, zero-order release rate (t1/2 ∼ 50 h) kinetics. A high therapeutic efficacy was found in murine models of experimental autoimmune encephalomyelitis (EAE) and hematological malignancies

    Liposome/DNA Systems: Correlation Between Hydrophobicity and DNA Conformational Changes

    No full text
    In a previous work, we found that liposome hydrophobicity could affect deoxyribonucleic acid (DNA) association efficiency. Now, we have focused on the possible correlation between liposome hydrophobicity and DNA conformation. DNA lyophilized with cationic vesicles with high hydrophobicity changes its conformation into a more condensed form, probably the C form. With noncharged vesicles, it changes its conformation from B to a partial A form. These results contribute to a better understanding of the interaction between DNA and lipids, suggesting there is direct relationship between hydrophobicity and DNA conformation changes: The higher the hydrophobicity factor, the more pronounced the changes in DNA form, to a more condensed form

    Use of Liposomes to Study Cellular Osmosensors

    No full text
    When cells are exposed to changes in the osmotic pressure of the external medium, they respond with mechanisms of osmoregulation. An increase of the extracellular osmolality leads to the accumulation of internal solutes by biosynthesis or uptake. Particular bacterial transporters act as osmosensors and respond to increased osmotic pressure by catalyzing uptake of compatible solutes. The functions of osmosensing, osmoregulation , and solute transport of these transporters can be analyzed in molecular detail after solubilization, isolation, and reconstitution into phospholipid vesicles. Using this approach, intrinsic functions of osmosensing transporters are studied in a defined hydrophilic (access to both sides of the membrane) and hydrophobic surrounding (phospholipid membrane), and free of putative interacting cofactors and regulatory proteins

    Simple Chromatographic Method for Simultaneous Analyses of Phosphatidylcholine, Lysophosphatidylcholine, and Free Fatty Acids

    No full text
    This study describes a simple chromatographic method for the simultaneous analyses of phosphatidylcholine (PC) and its hydrolytic degradation products: lysophosphatidylcholine (LPC) and free fatty acids (FFA). Quantitative determination of PC, LPC, and FFA is essential in order to assure safety and to accurately assess the shelf life of phospholipid-containing products. A single-run normal-phase high-performance liquid chromatography (HPLC) with evaporative light scattering detector has been developed. The method utilizes an Allsphere silica analytical column and a gradient elution with mobile phases consisting of chloroform: chloroform–methanol (70:30%, v/v) and chloroform–methanol–water–ammonia (45:45:9.5:0.5%, v/v/v/v). The method adequately resolves PC, LPC, and FFA within a run time of 25 min. The quantitative analysis of PC and LPC has been achieved with external standard method. The free fatty acids were analyzed as a group using linoleic acid as representative standard. Linear calibration curves were obtained for PC (1.64–16.3 μg, r2 = 0.9991) and LPC (0.6–5.0 μg, r2 = 0.9966), while a logarithmic calibration curve was obtained for linoleic acid (1.1–5.8 μg, r2 = 0.9967). The detection and quantification limits of LPC and FFA were 0.04 and 0.1 μg, respectively. As a means of validating the applicability of the assay to pharmaceutical products, PC liposome was subjected to alkaline hydrolytic degradation. Quantitative HPLC analysis showed that 97% of the total mass balance for PC could be accounted for in liposome formulation. The overall results show that the HPLC method could be a useful tool for chromatographic analysis, stability studies, and formulation characterization of phospholipid-based pharmaceuticals
    corecore