31 research outputs found

    Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential

    Get PDF
    Breast cancer is the commonest form of cancer in women, but successful treatment is confounded by the heterogeneous nature of breast tumours: Effective treatments exist for hormone-sensitive tumours, but triple-negative breast cancer results in poor survival. An area of increasing interest is metabolic reprogramming, whereby drug-induced alterations in the metabolic landscape of a tumour slow tumour growth and/or increase sensitivity to existing therapeutics. Nuclear receptors are transcription factors central to the expression of metabolic and transport proteins, and thus represent potential targets for metabolic reprogramming. We show that activation of the nuclear receptor FXR, either by its endogenous ligand CDCA or the synthetic GW4064, leads to cell death in four breast cancer cell lines with distinct phenotypes: MCF-10A (normal), MCF-7 (receptor positive), MDA-MB-231 and MDA-MB-468 (triple negative). Furthermore, we show that the mechanism of cell death is predominantly through the intrinsic apoptotic pathway. Finally, we demonstrate that FXR agonists do not stimulate migration in breast cancer cell lines, an important potential adverse effect. Together, our data support the continued examination of FXR agonists as a novel class of therapeutics for the treatment of breast cancer

    Beyond the Evidence of the New Hypertension Guidelines. Blood pressure measurement – is it good enough for accurate diagnosis of hypertension? Time might be in, for a paradigm shift (I)

    Get PDF
    Despite widespread availability of a large body of evidence in the area of hypertension, the translation of that evidence into viable recommendations aimed at improving the quality of health care is very difficult, sometimes to the point of questionable acceptability and overall credibility of the guidelines advocating those recommendations. The scientific community world-wide and especially professionals interested in the topic of hypertension are witnessing currently an unprecedented debate over the issue of appropriateness of using different drugs/drug classes for the treatment of hypertension. An endless supply of recent and less recent "drug-news", some in support of, others against the current guidelines, justifying the use of selected types of drug treatment or criticising other, are coming out in the scientific literature on an almost weekly basis. The latest of such debate (at the time of writing this paper) pertains the safety profile of ARBs vs ACE inhibitors. To great extent, the factual situation has been fuelled by the new hypertension guidelines (different for USA, Europe, New Zeeland and UK) through, apparently small inconsistencies and conflicting messages, that might have generated substantial and perpetuating confusion among both prescribing physicians and their patients, regardless of their country of origin. The overwhelming message conveyed by most guidelines and opinion leaders is the widespread use of diuretics as first-line agents in all patients with blood pressure above a certain cut-off level and the increasingly aggressive approach towards diagnosis and treatment of hypertension. This, apparently well-justified, logical and easily comprehensible message is unfortunately miss-obeyed by most physicians, on both parts of the Atlantic. Amazingly, the message assumes a universal simplicity of both diagnosis and treatment of hypertension, while ignoring several hypertension-specific variables, commonly known to have high level of complexity, such as: - accuracy of recorded blood pressure and the great inter-observer variability, - diversity in the competency and training of diagnosing physician, - individual patient/disease profile with highly subjective preferences, - difficulty in reaching consensus among opinion leaders, - pharmaceutical industry's influence, and, nonetheless, - the large variability in the efficacy and safety of the antihypertensive drugs. The present 2-series article attempts to identify and review possible causes that might have, at least in part, generated the current healthcare anachronism (I); to highlight the current trend to account for the uncertainties related to the fixed blood pressure cut-off point and the possible solutions to improve accuracy of diagnosis and treatment of hypertension (II)

    Hepatic Spheroids for Long-Term Toxicity Studies

    No full text

    Pregnane X Receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress.

    No full text
    Aims Circulating endogenous, dietary and foreign chemicals can contribute to vascular dysfunction. The mechanism by which the vasculature protects itself from these chemicals is unknown. This study investigates whether the pregnane X receptor (PXR), the major transcriptional regulator of hepatic drug metabolism and transport that responds to such xenobiotics, mediates vascular protection by co-ordinating a defence gene program in the vasculature.Methods and Results PXR was detected in primary human and rat aortic endothelial and smooth muscle cells and blood vessels including human and rat aorta. Metabolic PXR target genes cytochrome P450 3A, 2B, 2C and glutathione-S-transferase mRNA and activity were induced by PXR ligands in rodent and human vascular cells and absent in the aortas from PXR null mice stimulated in vivo or in rat aortic smooth muscle cells expressing dominant negative PXR. Activation of aortic PXR by classical agonists had several protective effects; increased xenobiotic metabolism demonstrated by bio-activation of the pro-drug clopidogrel, which reduced adenosine diphosphate-induced platelet aggregation; increased expression of multidrug resistance protein 1, mediating chemical efflux from the vasculature; and protection from reactive oxygen species-mediated cell death.Conclusions PXR co-ordinately up-regulates drug metabolism, transport and anti-oxidant genes to protect the vasculature from endogenous and exogenous insults, thus representing a novel gatekeeper for vascular defence
    corecore