6 research outputs found

    Sniffer bees as a reliable tool for Andrographis paniculata detection

    No full text
    Honey bees of Apis mellifera could be trained to be highly reliable sniffers for the detection of Andrographis paniculata using the classical Pavlovian conditioning training method with high success rate, > 80% based on the proboscis extension reflex as a positive response to the presence of the herb. The success rate of sniffer bees was found to be in a temperature dependent manner, but not significantly affected by the heating duration (5–110 min). The variance of 7.7% success rate was observed for the heating temperature ranged 50–120 °C with the highest success rate (92.7%) at 100 °C. This could be due to the content of signature compounds released from the heated herbal samples. Three signature compounds such as dihydroactinidiolide, apiol and 6,10,14-trimethyl-2-pentadecanone were proposed to be the volatile marker of the herb since their concentrations changed in accordance with the temperature profile and success rate of sniffer bees. The volatile compounds were extracted by divinylbenzene and carboxen coated polydimethylsiloxane fiber in the headspace of solid phase micro-extraction before analyzed by GC–MS for identification. Almost 50% success rate could be achieved using the minimum amount of 20 mg herbal samples. High selectivity of the sniffer bees has also been proven by no response to another morphologically similar herb, Clinacanthus nutans which was also heat-treated in the similar manner. The sniffer bees also showed to exhibit 80% success rate to detect A. paniculata mixed with 50% C. nutans as interference in a mixture

    Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents)

    No full text
    This review highlights the current advances in knowledge about the safety, efficacy, quality control, marketing and regulatory aspects of botanical medicines. Phytotherapeutic agents are standardized herbal preparations consisting of complex mixtures of one or more plants which contain as active ingredients plant parts or plant material in the crude or processed state. A marked growth in the worldwide phytotherapeutic market has occurred over the last 15 years. For the European and USA markets alone, this will reach about 7billionand7 billion and 5 billion per annum, respectively, in 1999, and has thus attracted the interest of most large pharmaceutical companies. Insufficient data exist for most plants to guarantee their quality, efficacy and safety. The idea that herbal drugs are safe and free from side effects is false. Plants contain hundreds of constituents and some of them are very toxic, such as the most cytotoxic anti-cancer plant-derived drugs, digitalis and the pyrrolizidine alkaloids, etc. However, the adverse effects of phytotherapeutic agents are less frequent compared with synthetic drugs, but well-controlled clinical trials have now confirmed that such effects really exist. Several regulatory models for herbal medicines are currently available including prescription drugs, over-the-counter substances, traditional medicines and dietary supplements. Harmonization and improvement in the processes of regulation is needed, and the general tendency is to perpetuate the German Commission E experience, which combines scientific studies and traditional knowledge (monographs). Finally, the trend in the domestication, production and biotechnological studies and genetic improvement of medicinal plants, instead of the use of plants harvested in the wild, will offer great advantages, since it will be possible to obtain uniform and high quality raw materials which are fundamental to the efficacy and safety of herbal drugs
    corecore