20 research outputs found

    On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model

    Get PDF
    During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer

    Novel quantitative trait locus is mapped to chromosome 12p11 for left ventricular mass in Dominican families: the Family Study of Stroke Risk and Carotid Atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Left ventricular mass (LVM) is an important risk factor for stroke and vascular disease. The genetic basis of LVM is unclear although a high heritability has been suggested. We sought to map quantitative trait loci (QTL) for LVM using large Dominican families.</p> <p>Methods</p> <p>Probands were selected from Dominican subjects of the population-based Northern Manhattan Study (NOMAS). LVM was measured by transthoracic echocardiography. A set of 405 microsatellite markers was used to screen the whole genome among 1360 subjects from 100 Dominican families who had complete phenotype data and DNA available. A polygenic covariate screening was run to identify the significant covariates. Variance components analysis was used to estimate heritability and to detect evidence for linkage, after adjusting for significant risk factors. Ordered-subset Analysis (OSA) was conducted to identify a more homogeneous subset for stratification analysis.</p> <p>Results</p> <p>LVM had a heritability of 0.58 in the studied population (p < 0.0001). The most significant evidence for linkage was found at chromosome 12p11 (MLOD = 3.11, empirical p = 0.0003) with peak marker at D12S1042. This linkage was significantly increased in a subset of families with the high average waist circumference (MLOD = 4.45, p = 0.0045 for increase in evidence for linkage).</p> <p>Conclusion</p> <p>We mapped a novel QTL near D12S1042 for LVM in Dominicans. Enhanced linkage evidence in families with larger waist circumference suggests that gene(s) residing within the QTL interact(s) with abdominal obesity to contribute to phenotypic variation of LVM. Suggestive evidence for linkage (LOD = 1.99) has been reported at the same peak marker for left ventricular geometry in a White population from the HyperGEN study, underscoring the importance of this QTL for left ventricular phenotype. Further fine mapping and validation studies are warranted to identify the underpinning genes.</p

    EphA3 Expressed in the Chicken Tectum Stimulates Nasal Retinal Ganglion Cell Axon Growth and Is Required for Retinotectal Topographic Map Formation

    Get PDF
    BACKGROUND: Retinotopic projection onto the tectum/colliculus constitutes the most studied model of topographic mapping and Eph receptors and their ligands, the ephrins, are the best characterized molecular system involved in this process. Ephrin-As, expressed in an increasing rostro-caudal gradient in the tectum/colliculus, repel temporal retinal ganglion cell (RGC) axons from the caudal tectum and inhibit their branching posterior to their termination zones. However, there are conflicting data regarding the nature of the second force that guides nasal axons to invade and branch only in the caudal tectum/colliculus. The predominant model postulates that this second force is produced by a decreasing rostro-caudal gradient of EphA7 which repels nasal optic fibers and prevents their branching in the rostral tectum/colliculus. However, as optic fibers invade the tectum/colliculus growing throughout this gradient, this model cannot explain how the axons grow throughout this repellent molecule. METHODOLOGY/PRINCIPAL FINDINGS: By using chicken retinal cultures we showed that EphA3 ectodomain stimulates nasal RGC axon growth in a concentration dependent way. Moreover, we showed that nasal axons choose growing on EphA3-expressing cells and that EphA3 diminishes the density of interstitial filopodia in nasal RGC axons. Accordingly, in vivo EphA3 ectodomain misexpression directs nasal optic fibers toward the caudal tectum preventing their branching in the rostral tectum. CONCLUSIONS: We demonstrated in vitro and in vivo that EphA3 ectodomain (which is expressed in a decreasing rostro-caudal gradient in the tectum) is necessary for topographic mapping by stimulating the nasal axon growth toward the caudal tectum and inhibiting their branching in the rostral tectum. Furthermore, the ability of EphA3 of stimulating axon growth allows understanding how optic fibers invade the tectum growing throughout this molecular gradient. Therefore, opposing tectal gradients of repellent ephrin-As and of axon growth stimulating EphA3 complement each other to map optic fibers along the rostro-caudal tectal axis

    A Multi-Component Model of the Developing Retinocollicular Pathway Incorporating Axonal and Synaptic Growth

    Get PDF
    During development, neurons extend axons to different brain areas and produce stereotypical patterns of connections. The mechanisms underlying this process have been intensively studied in the visual system, where retinal neurons form retinotopic maps in the thalamus and superior colliculus. The mechanisms active in map formation include molecular guidance cues, trophic factor release, spontaneous neural activity, spike-timing dependent plasticity (STDP), synapse creation and retraction, and axon growth, branching and retraction. To investigate how these mechanisms interact, a multi-component model of the developing retinocollicular pathway was produced based on phenomenological approximations of each of these mechanisms. Core assumptions of the model were that the probabilities of axonal branching and synaptic growth are highest where the combined influences of chemoaffinity and trophic factor cues are highest, and that activity-dependent release of trophic factors acts to stabilize synapses. Based on these behaviors, model axons produced morphologically realistic growth patterns and projected to retinotopically correct locations in the colliculus. Findings of the model include that STDP, gradient detection by axonal growth cones and lateral connectivity among collicular neurons were not necessary for refinement, and that the instructive cues for axonal growth appear to be mediated first by molecular guidance and then by neural activity. Although complex, the model appears to be insensitive to variations in how the component developmental mechanisms are implemented. Activity, molecular guidance and the growth and retraction of axons and synapses are common features of neural development, and the findings of this study may have relevance beyond organization in the retinocollicular pathway
    corecore