4,580 research outputs found

    Q2Q^2 evolution of chiral-odd twist-3 distribution e(x,Q2)e(x,Q^2)

    Get PDF
    We study the Q2Q^2 dependence of the chiral-odd twist-3 distribution e(x,Q2)e(x,Q^2).The anomalous dimension matrix for the corresponding twist-3 operators is calculated in the one-loop level. This study completes the calculation of the anomalous dimension matrices for all the twist-3 distributions together with the known results for the other twist-3 distributions g2(x,Q2)g_2(x,Q^2) and hL(x,Q2)h_L(x,Q^2). We also have confirmed that in the large NcN_c limit the Q2Q^2-evolution of e(x,Q2)e(x,Q^2) is wholely governed by the lowest eigenvalue of the anomalous dimension matrix which takes a very simple analytic form as in the case of g2g_2 and hLh_L.Comment: 16 pages LaTeX, 4 postscript figure

    A new description of motion of the Fermionic SO(2N+2) top in the classical limit under the quasi-anticommutation relation approximation

    Full text link
    The boson images of fermion SO(2N+1) Lie operators have been given together with those of SO(2N+2) ones. The SO(2N+1) Lie operators are generators of rotation in the (2N+1)-dimensional Euclidian space (N: number of single-particle states of the fermions). The images of fermion annihilation-creation operators must satisfy the canonical anti-commutation relations, when they operate on a spinor subspace. In the regular representation space we use a boson Hamiltonian with Lagrange multipliers to select out the spinor subspace. Based on these facts, a new description of a fermionic SO(2N+2) top is proposed. From the Heisenberg equations of motions for the boson operators, we get the SO(2N+1) self-consistent field (SCF) Hartree-Bogoliubov (HB) equation for the classical stationary motion of the fermion top. Decomposing an SO(2N+1) matrix into matrices describing paired and unpaired modes of fermions, we obtain a new form of the SO(2N+1) SCF equation with respect to the paired-mode amplitudes. To demonstrate the effectiveness of the new description based on the bosonization theory, the extended HB eigenvalue equation is applied to a superconducting toy-model which consists of a particle-hole plus BCS type interaction. It is solved to reach an interesting and exciting solution which is not found in the traditional HB eigenvalue equation, due to the unpaired-mode effects. To complete the new description, the Lagrange multipliers must be determined in the classical limit. For this aim a quasi anti-commutation-relation approximation is proposed. Only if a certain relation between an SO(2N+1) parameter z and the N is satisfied, unknown parameters k and l in the Lagrange multipliers can be determined withuout any inconcistency.Comment: 36 pages, no figures, typos corrected, published versio

    Moment Restriction-based Econometric Methods: An Overview

    Get PDF
    Moment restriction-based econometric modelling is a broad class which includes the parametric, semiparametric and nonparametric approaches. Moments and conditional moments themselves are nonparametric quantities. If a model is specified in part up to some finite dimensional parameters, this will provide semiparametric estimates or tests. If we use the score to construct moment restrictions to estimate finite dimensional parameters, this yields maximum likelihood (ML) estimates. Semiparametric or nonparametric settings based on moment restrictions have been the main concern in the literature, and comprise the most important and interesting topics. The purpose of this special issue on “Moment Restriction-based Econometric Methods†is to highlight some areas in which novel econometric methods have contributed significantly to the analysis of moment restrictions, specifically asymptotic theory for nonparametric regression with spatial data, a control variate method for stationary processes, method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models, properties of the CUE estimator and a modification with moments, finite sample properties of alternative estimators of coefficients in a structural equation with many instruments, instrumental variable estimation in the presence of many moment conditions, estimation of conditional moment restrictions without assuming parameter identifiability in the implied unconditional moments, moment-based estimation of smooth transition regression models with endogenous variables, a consistent nonparametric test for nonlinear causality, and linear programming-based estimators in simple linear regression.robustness;testing;estimation;model misspecification;moment restrictions;parametric;semiparametric and nonparametric methods

    Role of Water Film in Weathering of Porous Rhyolite under Water Unsaturated Condition

    Get PDF
    AbstractTo study weathering behavior under water-unsaturated conditions, flow-through dissolution experiments using a porous rhyolite were performed under both saturated and unsaturated conditions. When water was passed into a dried rock core, water saturation rapidly increased to 0.3 in 2hours, and then reached 0.4 in 6 days. The proportion of the reactive surface area under the unsaturated condition to that under the saturated condition, Auns/As, was 0.46 after 1 day and increased to 0.90 in 6 days. Because Auns/As was always greater than water saturation, the surfaces of air- filled pores seemed to be wetted with a water film and dissolved. The water film thickness was estimated to be 2–3nm. The reason for Auns/As < 1 may be that the flushing efficiency of dissolved elements in the water film was not enough to keep the concentration far from equilibrium, and thereby the dissolution rate in the water film was decreased

    Scaling Theory of Antiferromagnetic Heisenberg Ladder Models

    Full text link
    The S=1/2S=1/2 antiferromagnetic Heisenberg model on multi-leg ladders is investigated. Criticality of the ground-state transition is explored by means of finite-size scaling. The ladders with an even number of legs and those with an odd number of legs are distinguished clearly. In the former, the energy gap opens up as ΔE∼J⊥\Delta E\sim{J_\perp}, where J⊥{J_\perp} is the strength of the antiferromagnetic inter-chain coupling. In the latter, the critical phase with the central charge c=1c=1 extends over the whole region of J⊥>0{J_\perp}>0.Comment: 12 pages with 9 Postscript figures. To appear in J. Phys. A: Math. Ge

    Can the frequency-dependent specific heat be measured by thermal effusion methods?

    Full text link
    It has recently been shown that plane-plate heat effusion methods devised for wide-frequency specific-heat spectroscopy do not give the isobaric specific heat, but rather the so-called longitudinal specific heat. Here it is shown that heat effusion in a spherical symmetric geometry also involves the longitudinal specific heat.Comment: Paper presented at the Fifth International Workshop on Complex Systems (Sendai, September, 2007), to appear in AIP Conference Proceeding

    Large scale kinematics and dynamical modelling of the Milky Way nuclear star cluster

    Get PDF
    Within the central 10pc of our Galaxy lies a dense nuclear star cluster (NSC), and similar NSCs are found in most nearby galaxies. Studying the structure and kinematics of NSCs reveals the history of mass accretion of galaxy nuclei. Because the Milky Way (MW) NSC is at a distance of only 8kpc, we can spatially resolve the MWNSC on sub-pc scales. This makes the MWNSC a reference object for understanding the formation of all NSCs. We have used the NIR long-slit spectrograph ISAAC (VLT) in a drift-scan to construct an integral-field spectroscopic map of the central 9.5 x 8pc of our Galaxy. We use this data set to extract stellar kinematics both of individual stars and from the unresolved integrated light spectrum. We present a velocity and dispersion map from the integrated light and model these kinematics using kinemetry and axisymmetric Jeans models. We also measure CO bandhead strengths of 1,375 spectra from individual stars. We find kinematic complexity in the NSCs radial velocity map including a misalignment of the kinematic position angle by 9 degree counterclockwise relative to the Galactic plane, and indications for a rotating substructure perpendicular to the Galactic plane at a radius of 20" or 0.8pc. We determine the mass of the NSC within r = 4.2pc to 1.4 x 10^7 Msun. We also show that our kinematic data results in a significant underestimation of the supermassive black hole (SMBH) mass. The kinematic substructure and position angle misalignment may hint at distinct accretion events. This indicates that the MWNSC grew at least partly by the mergers of massive star clusters. Compared to other NSCs, the MWNSC is on the compact side of the r_eff - M_NSC relation. The underestimation of the SMBH mass might be caused by the kinematic misalignment and a stellar population gradient. But it is also possible that there is a bias in SMBH mass measurements obtained with integrated light.Comment: 20 pages, 19 Figures, Accepted for publication in A&
    • …
    corecore