5,675 research outputs found
Super Weyl Anomalies in the AdS/CFT Correspondence
Anomalies of N = (4,4) superconformal field theories coupled to a conformal
supergravity background in two dimensions are computed by using the AdS/CFT
correspondence. We find that Weyl, axial gauge and super Weyl transformations
are anomalous, while general coordinate, local Lorentz, vector gauge and local
super transformations are not. The coefficients of the anomalies show that the
superconformal field theories have the central charge expected in the AdS/CFT
correspondence.Comment: 16 pages, LaTeX, references added and typos correcte
High temperature expansion in supersymmetric matrix quantum mechanics
We formulate the high temperature expansion in supersymmetric matrix quantum
mechanics with 4, 8 and 16 supercharges. The models can be obtained by
dimensionally reducing N=1 U(N) super Yang-Mills theory in D=4,6,10 to 1
dimension, respectively. While the non-zero frequency modes become weakly
coupled at high temperature, the zero modes remain strongly coupled. We find,
however, that the integration over the zero modes that remains after
integrating out all the non-zero modes perturbatively, reduces to the
evaluation of connected Green's functions in the bosonic IKKT model. We perform
Monte Carlo simulation to compute these Green's functions, which are then used
to obtain the coefficients of the high temperature expansion for various
quantities up to the next-leading order. Our results nicely reproduce the
asymptotic behaviors of the recent simulation results at finite temperature. In
particular, the fermionic matrices, which decouple at the leading order, give
rise to substantial effects at the next-leading order, reflecting finite
temperature behaviors qualitatively different from the corresponding models
without fermions.Comment: 17 pages, 13 figures, (v2) some typos correcte
Resonant Cyclotron Radiation Transfer Model Fits to Spectra from Gamma-Ray Burst GRB870303
We demonstrate that models of resonant cyclotron radiation transfer in a
strong field (i.e. cyclotron scattering) can account for spectral lines seen at
two epochs, denoted S1 and S2, in the Ginga data for GRB870303. Using a
generalized version of the Monte Carlo code of Wang et al. (1988,1989b), we
model line formation by injecting continuum photons into a static
plane-parallel slab of electrons threaded by a strong neutron star magnetic
field (~ 10^12 G) which may be oriented at an arbitrary angle relative to the
slab normal. We examine two source geometries, which we denote "1-0" and "1-1,"
with the numbers representing the relative electron column densities above and
below the continuum photon source plane. We compare azimuthally symmetric
models, i.e. models in which the magnetic field is parallel to the slab normal,
with models having more general magnetic field orientations. If the bursting
source has a simple dipole field, these two model classes represent line
formation at the magnetic pole, or elsewhere on the stellar surface. We find
that the data of S1 and S2, considered individually, are consistent with both
geometries, and with all magnetic field orientations, with the exception that
the S1 data clearly favor line formation away from a polar cap in the 1-1
geometry, with the best-fit model placing the line-forming region at the
magnetic equator. Within both geometries, fits to the combined (S1+S2) data
marginally favor models which feature equatorial line formation, and in which
the observer's orientation with respect to the slab changes between the two
epochs. We interpret this change as being due to neutron star rotation, and we
place limits on the rotation period.Comment: LaTeX2e (aastex.cls included); 45 pages text, 17 figures (on 21
pages); accepted by ApJ (to be published 1 Nov 1999, v. 525
Exact fuzzy sphere thermodynamics in matrix quantum mechanics
We study thermodynamical properties of a fuzzy sphere in matrix quantum
mechanics of the BFSS type including the Chern-Simons term. Various quantities
are calculated to all orders in perturbation theory exploiting the one-loop
saturation of the effective action in the large-N limit. The fuzzy sphere
becomes unstable at sufficiently strong coupling, and the critical point is
obtained explicitly as a function of the temperature. The whole phase diagram
is investigated by Monte Carlo simulation. Above the critical point, we obtain
perfect agreement with the all order results. In the region below the critical
point, which is not accessible by perturbation theory, we observe the Hagedorn
transition. In the high temperature limit our model is equivalent to a totally
reduced model, and the relationship to previously known results is clarified.Comment: 22 pages, 14 figures, (v2) some typos correcte
- …