4,533 research outputs found

    Varying speed of light cosmology from a stringy short distance cutoff

    Get PDF
    It is shown that varying speed of light cosmology follows from a string-inspired minimal length uncertainty relation. Due to the reduction of the available phase space volume per quantum mode at short wavelengths, the equation of state of ultrarelativistic particles stiffens at very high densities. This causes a stronger than usual deceleration of the scale factor which competes with a higher than usual propagation speed of the particles. Various measures for the effective propagation speed are analyzed: the group and phase velocity in the high energy tail, the thermal average of the group and phase velocity, and the speed of sound. Of these three groups, only the first provides a possible solution to the cosmological horizon problem.Comment: 5 pages, 2 figure

    Thermonuclear supernova simulations with stochastic ignition

    Full text link
    We apply an ad hoc model for dynamical ignition in three-dimensional numerical simulations of thermonuclear supernovae assuming pure deflagrations. The model makes use of the statistical description of temperature fluctuations in the pre-supernova core proposed by Wunsch & Woosley (2004). Randomness in time is implemented by means of a Poisson process. We are able to vary the explosion energy and nucleosynthesis depending on the free parameter of the model which controls the rapidity of the ignition process. However, beyond a certain threshold, the strength of the explosion saturates and the outcome appears to be robust with respect to number of ignitions. In the most energetic explosions, we find about 0.75 solar masses of iron group elements. Other than in simulations with simultaneous multi-spot ignition, the amount of unburned carbon and oxygen at radial velocities of a few 1000 km/s tends to be reduced for an ever increasing number of ignition events and, accordingly, more pronounced layering results.Comment: 7 pages, 6 figures, accepted for publication in Astron. Astrophys.; PDF version with full resolution figures available from http://www.astro.uni-wuerzburg.de/~schmidt/Paper/StochIgnt_AA.pd

    Type Ia Supernova Explosion Models: Homogeneity versus Diversity

    Get PDF
    Type Ia supernovae (SN Ia) are generally believed to be the result of the thermonuclear disruption of Chandrasekhar-mass carbon-oxygen white dwarfs, mainly because such thermonuclear explosions can account for the right amount of Ni-56, which is needed to explain the light curves and the late-time spectra, and the abundances of intermediate-mass nuclei which dominate the spectra near maximum light. Because of their enormous brightness and apparent homogeneity SN Ia have become an important tool to measure cosmological parameters. In this article the present understanding of the physics of thermonuclear explosions is reviewed. In particular, we focus our attention on subsonic (``deflagration'') fronts, i.e. we investigate fronts propagating by heat diffusion and convection rather than by compression. Models based upon this mode of nuclear burning have been applied very successfully to the SN Ia problem, and are able to reproduce many of their observed features remarkably well. However, the models also indicate that SN Ia may differ considerably from each other, which is of importance if they are to be used as standard candles.Comment: 11 pages, 4 figures. To appear in Proc. 10th Ann. Astrophys. Conf. "Cosmic Explosions", Univ. of Maryland 1999, eds. S.S. Holt and W.W. Zhan

    Numerical dissipation and the bottleneck effect in simulations of compressible isotropic turbulence

    Full text link
    The piece-wise parabolic method (PPM) is applied to simulations of forced isotropic turbulence with Mach numbers ∌0.1...1\sim 0.1... 1. The equation of state is dominated by the Fermi pressure of an electron-degenerate fluid. The dissipation in these simulations is of purely numerical origin. For the dimensionless mean rate of dissipation, we find values in agreement with known results from mostly incompressible turbulence simulations. The calculation of a Smagorinsky length corresponding to the rate of numerical dissipation supports the notion of the PPM supplying an implicit subgrid scale model. In the turbulence energy spectra of various flow realisations, we find the so-called bottleneck phenomenon, i.e., a flattening of the spectrum function near the wavenumber of maximal dissipation. The shape of the bottleneck peak in the compensated spectrum functions is comparable to what is found in turbulence simulations with hyperviscosity. Although the bottleneck effect reduces the range of nearly inertial length scales considerably, we are able to estimate the value of the Kolmogorov constant. For steady turbulence with a balance between energy injection and dissipation, it appears that C≈1.7C\approx 1.7. However, a smaller value is found in the case of transonic turbulence with a large fraction of compressive components in the driving force. Moreover, we discuss length scales related to the dissipation, in particular, an effective numerical length scale Δeff\Delta_{\mathrm{eff}}, which can be regarded as the characteristic smoothing length of the implicit filter associated with the PPM.Comment: 23 pages, 7 figures. Revised version accepted by Comp. Fluids. Not all figures included due to size restriction. Complete PDF available at http://www.astro.uni-wuerzburg.de/%7Eschmidt/Paper/NumDiss_CF.pd

    Thermonuclear explosions of rapidly rotating white dwarfs - I. Deflagrations

    Full text link
    Context: Turbulent deflagrations of Chandrasekhar mass White Dwarfs are commonly used to model Type Ia Supernova explosions. In this context, rapid rotation of the progenitor star is plausible but has so far been neglected. Aims: The aim of this work is to explore the influence of rapid rotation on the deflagration scenario. Methods: We use three dimensional hydrodynamical simulations to model turbulent deflagrations ignited within a variety of rapidly rotating CO WDs obeying rotation laws suggested by accretion studies. Results: We find that rotation has a significant impact on the explosion. The flame develops a strong anisotropy with a preferred direction towards the stellar poles, leaving great amounts of unburnt matter along the equatorial plane. Conclusions: The large amount of unburnt matter is contrary to observed spectral features of SNe Ia. Thus, rapid rotation of the progenitor star and the deflagration scenario are incompatible in order to explain SNe Ia.Comment: 13 pages, 10 figures, accepted for publication by A&
    • 

    corecore