1,067 research outputs found

    Extracellular microRNAs in Relation to Weight Loss—A Systematic Review and Meta-Analysis

    Get PDF
    Obesity is an important risk factor for cardiovascular disease and type 2 diabetes mellitus. Even a modest weight loss of 5–15% improves metabolic health, but circulating markers to indicate weight loss efficiency are lacking. MicroRNAs, small non-coding post-transcriptional regulators of gene expression, are secreted from tissues into the circulation and may be potential biomarkers for metabolic health. However, it is not known which specific microRNA species are reproducibly changed in levels by weight loss. In this study, we performed a systematic review and meta-analysis to investigate the microRNAs associated with weight loss by comparing baseline to follow-up levels following intervention-driven weight loss. This systematic review was performed according to the PRISMA guidelines with searches in PubMed and SCOPUS. The primary search resulted in a total of 697 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 27 full-text articles, which were evaluated for quality and the risk of bias. We performed systematic data extraction, whereafter the relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: miR-26a, miR-126, and miR-223 were overall significantly increased following weight loss, while miR-142 was significantly decreased after weight loss. miR-221, miR-140, miR-122, and miR-146 were not significantly changed by intervention-driven weight loss. These results indicate that few miRNAs are significantly changed during weight loss.</p

    U(1) effective confinement theory from SU(2) restricted gauge theory via the Julia-Toulouse Approach

    Get PDF
    We derive an U(1) effective theory of color confinement by applying the so-called Julia-Toulouse Approach for defects condensation to the SU(2) restricted gauge theory defined by means of the Cho decomposition of the non-abelian connection. Cho's geometric construction naturally displays the topological degrees of freedom of the theory and can be used to put the Yang-Mills action into an abelianized form under certain conditions. On the other hand, the use of the Julia-Toulouse prescription to deal with the monopole condensation leads to an effective action describing the phase whose dynamics is dominated by the magnetic condensate. The effective theory we found describes the interaction between external electric currents displaying a short-range Yukawa interaction plus a linear confinement term that governs the long distance physics.Comment: 7 page

    Energy States of Colored Particle in a Chromomagnetic Field

    Get PDF
    The unitary transformation, which diagonalizes squared Dirac equation in a constant chromomagnetic field is found. Applying this transformation, we find the eigenfunctions of diagonalized Hamiltonian, that describe the states with definite value of energy and call them energy states. It is pointed out that, the energy states are determined by the color interaction term of the particle with the background chromofield and this term is responsible for the splitting of the energy spectrum. We construct supercharge operators for the diagonal Hamiltonian, that ensure the superpartner property of the energy states.Comment: 25 pages, some calculation details have been removed, typos correcte

    Entanglement in the quantum Ising model

    Full text link
    We study the asymptotic scaling of the entanglement of a block of spins for the ground state of the one-dimensional quantum Ising model with transverse field. When the field is sufficiently strong, the entanglement grows at most logarithmically in the number of spins. The proof utilises a transformation to a model of classical probability called the continuum random-cluster model, and is based on a property of the latter model termed ratio weak-mixing. Our proof applies equally to a large class of disordered interactions

    Confront Holographic QCD with Regge Trajectories of vectors and axial-vectors

    Full text link
    We derive the general 5-dimension metric structure of the DpDqDp-Dq system in type II superstring theory, and demonstrate the physical meaning of the parameters characterizing the 5-dimension metric structure of the \textit{holographic} QCD model by relating them to the parameters describing Regge trajectories. By matching the spectra of vector mesons ρ1\rho_1 with deformed DpDqDp-Dq soft-wall model, we find that the spectra of vector mesons ρ1\rho_1 can be described very well in the soft-wall D3DqD3-Dq model, i.e, AdS5AdS_5 soft-wall model. We then investigate how well the AdS5AdS_5 soft-wall model can describe the Regge trajectory of axial-vector mesons a1a_1. We find that the constant component of the 5-dimension mass square of axial-vector mesons plays an efficient role to realize the chiral symmetry breaking in the vacuum, and a small negative z4z^4 correction in the 5-dimension mass square is helpful to realize the chiral symmetry restoration in high excitation states.Comment: 9 pages, 3 figure and 3 tables, one section adde

    Propagators in Noncommutative Instantons

    Full text link
    We explicitly construct Green functions for a field in an arbitrary representation of gauge group propagating in noncommutative instanton backgrounds based on the ADHM construction. The propagators for spinor and vector fields can be constructed in terms of those for the scalar field in noncommutative instanton background. We show that the propagators in the adjoint representation are deformed by noncommutativity while those in the fundamental representation have exactly the same form as the commutative case.Comment: 28 pages, Latex, v2: A few typos correcte

    Dynamical Chiral Symmetry Breaking by a Magnetic Field in QED

    Get PDF
    It is shown that the chiral symmetry is spontaneously broken by a constant magnetic field in QED. The dynamical mass of fermions (energy gap in the fermion spectrum) is mdynCeBexp[(π/α)1/2]m_{dyn}\simeq C\sqrt{eB}\exp\left[-\left(\pi/\alpha\right) ^{1/2}\right], where BB is the magnetic field, the constant CC is of order one and α=e2/4π\alpha=e^2/4\pi is the renormalized coupling constant. Possible applications of this effect are discussed.Comment: 12 pages, LaTeX. The final journal version (with minor corrections
    corecore