13 research outputs found

    Smooth Entropy in Axiomatic Thermodynamics

    Get PDF
    Thermodynamics can be formulated in either of two approaches, the phenomenological approach, which refers to the macroscopic properties of systems, and the statistical approach, which describes systems in terms of their microscopic constituents. We establish a connection between these two approaches by means of a new axiomatic framework that can take errors and imprecisions into account. This link extends to systems of arbitrary sizes including very small systems, for which the treatment of imprecisions is pertinent to any realistic situation. Based on this, we identify the quantities that characterise whether certain thermodynamic processes are possible with entropy measures from information theory. In the error-tolerant case, these entropies are so-called smooth min and max entropies. Our considerations further show that in an appropriate macroscopic limit there is a single entropy measure that characterises which state transformations are possible. In the case of many independent copies of a system (the so-called i.i.d. regime), the relevant quantity is the von Neumann entropy. Transformations among microcanonical states are characterised by the Boltzmann entropy

    Experimental plug&play quantum coin flipping

    Get PDF
    Performing complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here, we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug&play system, designed for quantum key distribution. We also show how to combine our protocol with coin flipping protocols that are almost perfectly secure against bounded adversaries, hence enhancing them with a level of information-theoretic security. Our results offer a powerful toolbox for future secure quantum communications.Comment: Version 2, 19 pages including detailed security analysi

    Energetic instability of passive states in thermodynamics

    Get PDF
    Passivity is a fundamental concept in thermodynamics that demands a quantum system’s energy cannot be lowered by any reversible, unitary process acting on the system. In the limit of many such systems, passivity leads in turn to the concept of complete passivity, thermal states and the emergence of a thermodynamic temperature. Here we only consider a single system and show that every passive state except the thermal state is unstable under a weaker form of reversibility. Indeed, we show that given a single copy of any athermal quantum state, an optimal amount of energy can be extracted from it when we utilise a machine that operates in a reversible cycle. This means that for individual systems, the only form of passivity that is stable under general reversible processes is complete passivity, and thus provides a physically motivated identification of thermal states when we are not operating in the thermodynamic limit
    corecore