3 research outputs found

    Carbonaceous particles reduce marine microgel formation

    No full text
    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14ā€…nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1ā€…Ī¼gL(āˆ’1) CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca(2+) bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem
    corecore