5,356 research outputs found

    Cost-Effectiveness of Electricity Energy Efficiency Programs

    Get PDF
    We analyze the cost-effectiveness of electric utility rate payer–funded programs to promote demand-side management (DSM) and energy efficiency investments. We develop a conceptual model that relates demand growth rates to accumulated average DSM capital per customer and changes in energy prices, income, and weather. We estimate that model using nonlinear least squares for two different utility samples. Based on the results for the most complete sample, we find that DSM expenditures over the last 18 years have resulted in a central estimate of 1.1 percent electricity savings at a weighted average cost to utilities (or other program funders) of about 6 cents per kWh saved. Econometrically-based policy simulations find that incremental DSM spending by utilities that had no or relatively low levels of average DSM spending per customer in 2006 could produce 14 billion kWh in additional savings at an expected incremental cost to the utilities of about 3 cents per kWh saved.energy efficiency, demand-side management, negawatt cost

    Cost-Effectiveness of Electricity Energy Efficiency Programs

    Get PDF
    We analyze the cost-effectiveness of electric utility ratepayer-funded programs to promote demand-side management (DSM) and energy efficiency (EE) investments. We specify a model that relates electricity demand to previous EE DSM spending, energy prices, income, weather, and other demand factors. In contrast to previous studies, we allow EE DSM spending to have a potential long-term demand effect and explicitly address possible endogeneity in spending. We find that current period EE DSM expenditures reduce electricity demand and that this effect persists for a number of years. Our findings suggest that ratepayer-funded DSM expenditures between 1992 and 2006 produced a central estimate of 0.9 percent savings in electricity consumption over that time period and 1.8 percent savings over all years. These energy savings came at an expected average cost to utilities of roughly 5 cents per kWh saved when future savings are discounted at a 5 percent rate.energy efficiency, demand-side management, electricity demand

    Cost-Effectiveness of Electricity Energy Efficiency Programs

    Get PDF
    We analyze the cost-effectiveness of electric utility ratepayer–funded programs to promote demand-side management (DSM) and energy efficiency (EE) investments. We specify a model that relates electricity demand to previous EE DSM spending, energy prices, income, weather, and other demand factors. In contrast to previous studies, we allow EE DSM spending to have a potential long-term demand effect and explicitly address possible endogeneity in spending. We find that current period EE DSM expenditures reduce electricity demand and that this effect persists for a number of years. Our findings suggest that ratepayer funded DSM expenditures between 1992 and 2006 produced a central estimate of 0.9 percent savings in electricity consumption over that time period and a 1.8 percent savings over all years. These energy savings came at an expected average cost to utilities of roughly 5 cents per kWh saved when future savings are discounted at a 5 percent rate.

    Systematic derivation of a rotationally covariant extension of the 2-dimensional Newell-Whitehead-Segel equation

    Full text link
    An extension of the Newell-Whitehead-Segel amplitude equation covariant under abritrary rotations is derived systematically by the renormalization group method.Comment: 8 pages, to appear in Phys. Rev. Letters, March 18, 199

    A pattern-recognition theory of search in expert problem solving

    Get PDF
    Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data

    A nonpolynomial Schroedinger equation for resonantly absorbing gratings

    Full text link
    We derive a nonlinear Schroedinger equation with a radical term, in the form of the square root of (1-|V|^2), as an asymptotic model of the optical medium built as a periodic set of thin layers of two-level atoms, resonantly interacting with the electromagnetic field and inducing the Bragg reflection. A family of bright solitons is found, which splits into stable and unstable parts, exactly obeying the Vakhitov-Kolokolov criterion. The soliton with the largest amplitude, which is |V| = 1, is found in an explicit analytical form. It is a "quasi-peakon", with a discontinuity of the third derivative at the center. Families of exact cnoidal waves, built as periodic chains of quasi-peakons, are found too. The ultimate solution belonging to the family of dark solitons, with the background level |V| = 1, is a dark compacton, also obtained in an explicit analytical form. Those bright solitons which are unstable destroy themselves (if perturbed) attaining the critical amplitude, |V| = 1. The dynamics of the wave field around this critical point is studied analytically, revealing a switch of the system into an unstable phase. Collisions between bright solitons are investigated too. The collisions between fast solitons are quasi-elastic, while slowly moving ones merge into breathers, which may persist or perish (in the latter case, also by attaining |V| = 1).Comment: Physical Review A, in pres

    Out-of-equilibrium critical dynamics at surfaces: Cluster dissolution and non-algebraic correlations

    Full text link
    We study nonequilibrium dynamical properties at a free surface after the system is quenched from the high-temperature phase into the critical point. We show that if the spatial surface correlations decay sufficiently rapidly the surface magnetization and/or the surface manifold autocorrelations has a qualitatively different universal short time behavior than the same quantities in the bulk. At a free surface cluster dissolution may take place instead of domain growth yielding stationary dynamical correlations that decay in a stretched exponential form. This phenomenon takes place in the three-dimensional Ising model and should be observable in real ferromagnets.Comment: 4 pages, 4 figure

    Raman solitons in transient SRS

    Full text link
    We report the observation of Raman solitons on numerical simulations of transient stimulated Raman scattering (TSRS) with small group velocity dispersion. The theory proceeds with the inverse scattering transform (IST) for initial-boundary value problems and it is shown that the explicit theoretical solution obtained by IST for a semi-infinite medium fits strikingly well the numerical solution for a finite medium. We understand this from the rapid decrease of the medium dynamical variable (the potential of the scattering theory). The spectral transform reflection coefficient can be computed directly from the values of the input and output fields and this allows to see the generation of the Raman solitons from the numerical solution. We confirm the presence of these nonlinear modes in the medium dynamical variable by the use of a discrete spectral analysis.Comment: LaTex file, to appear in Inverse Problem

    Defect Dynamics for Spiral Chaos in Rayleigh-Benard Convection

    Full text link
    A theory of the novel spiral chaos state recently observed in Rayleigh-Benard convection is proposed in terms of the importance of invasive defects i.e defects that through their intrinsic dynamics expand to take over the system. The motion of the spiral defects is shown to be dominated by wave vector frustration, rather than a rotational motion driven by a vertical vorticity field. This leads to a continuum of spiral frequencies, and a spiral may rotate in either sense depending on the wave vector of its local environment. Results of extensive numerical work on equations modelling the convection system provide some confirmation of these ideas.Comment: Revtex (15 pages) with 4 encoded Postscript figures appende

    Persistence of Manifolds in Nonequilibrium Critical Dynamics

    Full text link
    We study the persistence P(t) of the magnetization of a d' dimensional manifold (i.e., the probability that the manifold magnetization does not flip up to time t, starting from a random initial condition) in a d-dimensional spin system at its critical point. We show analytically that there are three distinct late time decay forms for P(t) : exponential, stretched exponential and power law, depending on a single parameter \zeta=(D-2+\eta)/z where D=d-d' and \eta, z are standard critical exponents. In particular, our theory predicts that the persistence of a line magnetization decays as a power law in the d=2 Ising model at its critical point. For the d=3 critical Ising model, the persistence of the plane magnetization decays as a power law, while that of a line magnetization decays as a stretched exponential. Numerical results are consistent with these analytical predictions.Comment: 4 pages revtex, 1 eps figure include
    corecore