53 research outputs found

    Singular inextensible limit in the vibrations of post-buckled rods: Analytical derivation and role of boundary conditions

    Get PDF
    In-plane vibrations of an elastic rod clamped at both extremities are studied. The rod is modeled as an extensible planar Kirchhoff elastic rod under large displacements and rotations. Equilibrium configurations and vibrations around these configurations are computed analytically in the incipient post-buckling regime. Of particular interest is the variation of the first mode frequency as the load is increased through the buckling threshold. The loading type is found to have a crucial importance as the first mode frequency is shown to behave singularly in the zero thickness limit in the case of prescribed axial displacement, whereas a regular behavior is found in the case of prescribed axial load.This publication is based in part upon work supported by Award no. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST) (A.G.). A.G. is a Wolfson/Royal Society Merit Award holder. Support from the Royal Society, through the International Exchanges Scheme (Grant IE120203), is also acknowledge

    Soft beams: when capillarity induces axial compression

    Full text link
    We study the interaction of an elastic beam with a liquid drop in the case where bending and extensional effects are both present. We use a variational approach to derive equilibrium equations and constitutive relation for the beam. This relation is shown to include a term due to surface energy in addition of the classical Young's modulus term, leading to a modification of Hooke's law. At the triple point where solid, liquid, and vapor phases meet we find that the external force applied on the beam is parallel to the liquid-vapor interface. Moreover, in the case where solid-vapor and solid-liquid interface energies do not depend on the extension state of the beam, we show that the extension in the beam is continuous at the triple point and that the wetting angle satisfy the classical Young-Dupr\'e relation

    Role of uncrosslinked chains in droplets dynamics on silicone elastomers

    Full text link
    We report an unexpected behavior in wetting dynamics on soft silicone substrates: the dynamics of aqueous droplets deposited on vertical plates of such elastomers exhibits two successive speed regimes. This macroscopic observation is found to be closely related to microscopic phenomena occurring at the scale of the polymer network: we show that uncrosslinked chains found in most widely used commercial silicone elastomers are responsible for this surprising behavior. A direct visualization of the uncrosslinked oligomers collected by water droplets is performed, evidencing that a capillarity-induced phase separation occurs: uncrosslinked oligomers are extracted from the silicone elastomer network by the water-glycerol mixture droplet. The sharp speed change is shown to coincide with an abrupt transition in surface tension of the droplets, when a critical surface concentration in uncrosslinked oligomer chains is reached. We infer that a droplet shifts to a second regime with a faster speed when it is completely covered with a homogeneous oil film

    Getting DNA twist rigidity from single molecule experiments

    Get PDF
    We use an elastic rod model with contact to study the extension versus rotation diagrams of single supercoiled DNA molecules. We reproduce quantitatively the supercoiling response of overtwisted DNA and, using experimental data, we get an estimation of the effective supercoiling radius and of the twist rigidity of B-DNA. We find that unlike the bending rigidity, the twist rigidity of DNA seems to vary widely with the nature and concentration of the salt buffer in which it is immerged

    Writhe formulas and antipodal points in plectonemic DNA configurations

    Full text link
    The linking and writhing numbers are key quantities when characterizing the structure of a piece of supercoiled DNA. Defined as double integrals over the shape of the double-helix, these numbers are not always straightforward to compute, though a simplified formula exists. We examine the range of applicability of this widely-used simplified formula, and show that it cannot be employed for plectonemic DNA. We show that inapplicability is due to a hypothesis of Fuller theorem that is not met. The hypothesis seems to have been overlooked in many works.Comment: 20 pages, 7 figures, 47 reference
    • …
    corecore