1,362 research outputs found
Near Infrared Spectroscopy of High Redshift Active Galactic Nuclei. II. Disappearing Narrow Line Regions and the Role of Accretion
We present new near infrared spectroscopic measurements for 29 luminous
high-z quasars and use the data to discuss the size and other properties of the
NLRs in those sources. The high resolution spectra have been used to carefully
model the Fe II blends and to provide reliable [O III], Fe II and Hb
measurements. We find that about 2/3 of all high luminosity sources show strong
[O III] lines while the remaining objects show no or very weak such line. While
weak [O III] emitters are also found among lower luminosity AGN, we argue that
the implications for very high luminosity objects are different. In particular,
we suggest that the averaging of these two populations in other works gave rise
to claims of a Baldwin relationship in [O III] which is not confirmed by our
data. We also argue that earlier proposed relations of the type R_NLR \propto
L_[O III]^{1/2}, where R_NLR is the NLR radius, are theoretically sound yet
they must break down for R_NLR exceeding a few kpc. This suggests that the NLR
properties in luminous sources are different from those observed in nearby AGN.
In particular, we suggest that some sources lost their very large, dynamically
unbound NLR while others are in a phase of violent star-forming events that
produce a large quantity of high density gas in the central kpc. This gas is
ionized and excited by the central radiation source and its spectroscopic
properties may be different from those observed in nearby, lower luminosity
NLRs. We also discuss the dependence of EW(Hb) and Fe II/Hb on L, M_BH, and
accretion rate for a large sample of AGNs. The strongest dependence of the two
quantities is on the accretion rate and the Fe II/Hb correlation is probably
due to the EW(Hb) dependence on accretion rate. We show the most extreme values
measured so far of Fe II/Hb and address its correlation with EW([O III]).Comment: 10 pages (emulateapj), 9 figures. Accepted by Ap
Locating Star-Forming Regions in Quasar Host Galaxies
We present a study of the morphology and intensity of star formation in the
host galaxies of eight Palomar-Green quasars using observations with the Hubble
Space Telescope. Our observations are motivated by recent evidence for a close
relationship between black hole growth and the stellar mass evolution in its
host galaxy. We use narrow-band [O II] 3727, H, [O III]
5007 and Pa images, taken with the WFPC2 and NICMOS
instruments, to map the morphology of line-emitting regions, and, after
extinction corrections, diagnose the excitation mechanism and infer
star-formation rates. Significant challenges in this type of work are the
separation of the quasar light from the stellar continuum and the
quasar-excited gas from the star-forming regions. To this end, we present a
novel technique for image decomposition and subtraction of quasar light. Our
primary result is the detection of extended line-emitting regions with sizes
ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus,
powered primarily by star formation. We determine star-formation rates of order
a few tens of M/yr. The host galaxies of our target quasars have
stellar masses of order M and specific star formation rates
on a par with those of M82 and luminous infrared galaxies. As such they fall at
the upper envelope or just above the star-formation mass sequence in the
specific star formation vs stellar mass diagram. We see a clear trend of
increasing star formation rate with quasar luminosity, reinforcing the link
between the growth of the stellar mass of the host and the black hole mass
found by other authors.Comment: Accepted for publication in M.N.R.A.
Mid-Infrared line diagnostics of Active Galaxies -- A spectroscopic AGN survey with ISO-SWS
We present medium resolution (R approx. 1500) ISO-SWS 2.4--45 micron spectra
of a sample of 29 galaxies with active nuclei. This data set is rich in fine
structure emission lines tracing the narrow line regions and (circum-)nuclear
star formation regions, and it provides a coherent spectroscopic reference for
future extragalactic studies in the mid-infrared. We use the data set to
briefly discuss the physical conditions in the narrow line regions (density,
temperature, excitation, line profiles) and to test for possible differences
between AGN sub-types. Our main focus is on new tools for determining the
propertibes of dusty galaxies and on the AGN-starburst connection. We present
mid-IR line ratio diagrams which can be used to identify composite (starburst +
AGN) sources and to distinguish between emission excited by active nuclei and
emission from (circum-nuclear) star forming regions. For instance, line ratios
of high to low excitation lines like [O IV]25.9um/[Ne II]12.8um, that have been
used to probe for AGNs in dusty objects, can be examined in more detail and
with better statistics now. In addition, we present two-dimensional diagnostic
diagrams that are fully analogous to classical optical diagnostic diagrams, but
better suited for objects with high extinction. Finally, we discuss
correlations of mid-infrared line fluxes to the mid- and far-infrared
continuum. We compare these relations to similar relations in starburst
galaxies in order to examine the contribution of AGNs to the bolometric
luminosities of their host galaxies. The spectra are available in electronic
form from the authors.Comment: 24 pages, 23 figures, 5 tables. Accepted for A&
A New H I Survey of Active Galaxies
We have conducted a new Arecibo survey for H I emission for 113 galaxies with
broad-line (type 1) active galactic nuclei (AGNs) out to recession velocities
as high as 35,000 km/s. The primary aim of the study is to obtain sensitive H I
spectra for a well-defined, uniformly selected sample of active galaxies that
have estimates of their black hole masses in order to investigate correlations
between H I properties and the characteristics of the AGNs. H I emission was
detected in 66 out of the 101 (65%) objects with spectra uncorrupted by radio
frequency interference, among which 45 (68%) have line profiles with adequate
signal-to-noise ratio and sufficiently reliable inclination corrections to
yield robust deprojected rotational velocities. This paper presents the basic
survey products, including an atlas of H I spectra, measurements of H I flux,
line width, profile asymmetry, optical images, optical spectroscopic
parameters, as well as a summary of a number of derived properties pertaining
to the host galaxies. To enlarge our primary sample, we also assemble all
previously published H I measurements of type 1 AGNs for which can can estimate
black hole masses, which total an additional 53 objects. The final
comprehensive compilation of 154 broad-line active galaxies, by far the largest
sample ever studied, forms the basis of our companion paper, which uses the H I
database to explore a number of properties of the AGN host galaxies.Comment: To appear in ApJS; 31 pages. Preprint will full-resolution figures
can be downloaded from http://www.ociw.edu/~lho/preprints/ms1.pd
Evolutionary Consequences of Dusty Tori in Active Galactic Nuclei
Deep surveys of {\em Chandra} and {\em HST} (Hubble Space Telescope) show
that active galactic nucleus (AGN) populations are changing with hard X-ray
luminosities. This arises an interesting question whether the dusty torus is
evolving with the central engines. We assemble a sample of 50 radio-quiet PG
quasars to tackle this problem. The covering factors of the dusty tori can be
estimated from the multiwavelength continuum. We find they are strongly
correlated with the hard X-ray luminosity. Interestingly this correlation
agrees with the fraction of type II AGNs discovered by {\em Chandra} and {\em
HST}, implying strong evidence for that the AGN population changing results
from the evolution of the tori. We also find that the frequencies of the dips
around 1m in the continuum correlate with the covering factors in the
present sample, indicating the dip frequencies are adjusted by the covering
factors. In the scenario of fueling black hole from the torus, the covering
factor is a good and the dip frequency is a potential indicator of the torus
evolution.Comment: 4 pages in emulateapj5.sty. Accepted by ApJ Letter
Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. III. Integrated Spectra for Hydrogen-Helium Disks
We have constructed a grid of non-LTE disk models for a wide range of black
hole mass and mass accretion rate, for several values of viscosity parameter
alpha, and for two extreme values of the black hole spin: the maximum-rotation
Kerr black hole, and the Schwarzschild (non-rotating) black hole. Our procedure
calculates self-consistently the vertical structure of all disk annuli together
with the radiation field, without any approximations imposed on the optical
thickness of the disk, and without any ad hoc approximations to the behavior of
the radiation intensity. The total spectrum of a disk is computed by summing
the spectra of the individual annuli, taking into account the general
relativistic transfer function. The grid covers nine values of the black hole
mass between M = 1/8 and 32 billion solar masses with a two-fold increase of
mass for each subsequent value; and eleven values of the mass accretion rate,
each a power of 2 times 1 solar mass/year. The highest value of the accretion
rate corresponds to 0.3 Eddington. We show the vertical structure of individual
annuli within the set of accretion disk models, along with their local emergent
flux, and discuss the internal physical self-consistency of the models. We then
present the full disk-integrated spectra, and discuss a number of
observationally interesting properties of the models, such as
optical/ultraviolet colors, the behavior of the hydrogen Lyman limit region,
polarization, and number of ionizing photons. Our calculations are far from
definitive in terms of the input physics, but generally we find that our models
exhibit rather red optical/UV colors. Flux discontinuities in the region of the
hydrogen Lyman limit are only present in cool, low luminosity models, while
hotter models exhibit blueshifted changes in spectral slope.Comment: 20 pages, 31 figures, ApJ in press, spectral models are available for
downloading at http://www.physics.ucsb.edu/~blaes/habk
The Primordial Helium Abundance: Towards Understanding and Removing the Cosmic Scatter in the dY/dZ Relation
We present results from photoionization models of low-metallicity HII
regions. These nebulae form the basis for measuring the primordial helium
abundance. Our models show that the helium ionization correction factor (ICF)
can be non-negligible for nebulae excited by stars with effective temperatures
larger than 40,000 K. Furthermore, we find that when the effective temperature
rises to above 45,000 K, the ICF can be significantly negative. This result is
independent of the choice of stellar atmosphere. However, if an HII region has
an [O III] 5007/[O I] 6300 ratio greater than 300, then our models show that,
regardless of its metallicity, it will have a negligibly small ICF. A similar,
but metallicity dependent, result was found using the [O III] 5007/H
ratio. These two results can be used as selection criteria to remove nebulae
with potentially non-negligible ICFs. Using our metallicity independent
criterion on the data of Izotov & Thuan (1998) results in a 20% reduction of
the rms scatter about the best fit line. A fit to the selected data
results in a slight increase of the value of the primordial helium abundance.Comment: 10 pages, 5 figures, accepted by the Ap
The X-ray Emission from the Nucleus of the Dwarf Elliptical Galaxy NGC 3226
We present the first high resolution X-ray image of the dwarf elliptical
galaxy NGC 3226. The data were obtained during an observation of the nearby
Seyfert Galaxy NGC 3227 using the Chandra X-ray Observatory. We detect a point
X-ray source spatially consistent with the optical nucleus of NGC 3226 and a
recently-detected, compact, flat-spectrum, radio source. The X-ray spectrum can
be measured up to ~10 keV and is consistent with a power law with a photon
index 1.7 <~ Gamma <~ 2.2, or thermal bremmstrahlung emission with 4 <~ kT <~
10 keV. In both cases the luminosity in the 2--10 keV band ~10^{40} h_{75}^{-1}
erg/s. We find marginal evidence that the nucleus varies within the
observation. These characteristics support evidence from other wavebands that
NGC 3226 harbors a low-luminosity, active nucleus. We also comment on two
previously-unknown, fainter X-ray sources <~ 15 arcsec from the nucleus of NGC
3226. Their proximity to the nucleus (with projected distances <~ 1.3/h_{75}
kpc) suggests both are within NGC 3226, and thus have luminosities (~few x
10^{38} -- few x 10^{39} erg/s) consistent with black-hole binary systems.Comment: Accepted for publication in ApJ. Figures in colo
- …
