322 research outputs found
Classical Solutions in a Lorentz-violating Maxwell-Chern-Simons Electrodynamics
We take as starting point the planar model arising from the dimensional
reduction of the Maxwell Electrodynamics with the (Lorentz-violating)
Carroll-Field-Jackiw term. We then write and study the extended Maxwell
equations and the corresponding wave equations for the potentials. The solution
to these equations show some interesting deviations from the usual MCS
Electrodynamics, with background-dependent correction terms. In the case of a
time-like background, the correction terms dominate over the MCS sector in the
region far from the origin, and establish the behaviour of a massless
Electrodynamics (in the electric sector). In the space-like case, the solutions
indicate the clear manifestation of spatial anisotropy, which is consistent
with the existence of a privileged direction is space.Comment: latex, 8 page
Supersymmetric Extension of the Lorentz and CPT-Violating Maxwell-Chern-Simons Model
Focusing on gauge degrees of freedom specified by a 1+3 dimensions model
hosting a Maxwell term plus a Lorentz and CPT non-invariant Chern-Simons-like
contribution, we obtain a minimal extension of such a system to a
supersymmetric environment. We comment on resulting peculiar self-couplings for
the gauge sector, as well as on background contribution for gaugino masses.
Furthermore, a non-polynomial generalization is presented.Comment: revtex4, 4 pages, no figure
Stem cell transplantation for fanconi anemia: 20 years of progressive decrease in the dose of cyclophosphamide without irradiation
La fesomia actual és de finals del segle XVIII.Primer pla, contrapicat, d'un senzill edifici
d'habitatges entre mitgeres.
Consta de planta baixa, quatre plantes pis
i terrat, amb un volum reculat respecte el pla de façana.
S'organitza en tres eixos verticals.
Combina balcons amb finestretes
Kondo lattice model with a direct exchange interaction between localized moments
We study the Kondo lattice model with a direct antiferromagnetic exchange
interaction between localized moments. Ferromagnetically long-range ordered
state coexisting with the Kondo screening shows a continuous quantum phase
transition to the Kondo singlet state. We obtain the value of the critical
point where the magnetizations of the localized moments and the conduction
electrons vanish. The magnetization curves yield a universal critical exponent
independent of the filling factors and the strength of the interaction between
localized moments. It is shown that the direct exchange interaction between
localized moments introduces another phase transition from an antiferromagnetic
ordering to a ferromagnetic ordering for small Kondo exchange interaction. We
also explain the local minimum of the Kondo temperature in recent experiments.Comment: 6 pages, 5 figures, final versio
Energy Contents of Some Well-Known Solutions in Teleparallel Gravity
In the context of teleparallel equivalent to General Relativity, we study
energy and its relevant quantities for some well-known black hole solutions.
For this purpose, we use the Hamiltonian approach which gives reasonable and
interesting results. We find that our results of energy exactly coincide with
several prescriptions in General Relativity. This supports the claim that
different energy-momentum prescriptions can give identical results for a given
spacetime. We also evaluate energy-momentum flux of these solutions.Comment: 16 pages, accepted for publication in Astrophys. Space Sc
Primordial perturbations in a non singular bouncing universe model
We construct a simple non singular cosmological model in which the currently
observed expansion phase was preceded by a contraction. This is achieved, in
the framework of pure general relativity, by means of a radiation fluid and a
free scalar field having negative energy. We calculate the power spectrum of
the scalar perturbations that are produced in such a bouncing model and find
that, under the assumption of initial vacuum state for the quantum field
associated with the hydrodynamical perturbation, this leads to a spectral index
n=-1. The matching conditions applying to this bouncing model are derived and
shown to be different from those in the case of a sharp transition. We find
that if our bounce transition can be smoothly connected to a slowly contracting
phase, then the resulting power spectrum will be scale invariant.Comment: 11 pages, RevTeX 4, 8 figures, submitted to Phys. Rev.
Exciton swapping in a twisted graphene bilayer as a solid-state realization of a two-brane model
It is shown that exciton swapping between two graphene sheets may occur under
specific conditions. A magnetically tunable optical filter is described to
demonstrate this new effect. Mathematically, it is shown that two turbostratic
graphene layers can be described as a "noncommutative" two-sheeted
(2+1)-spacetime thanks to a formalism previously introduced for the study of
braneworlds in high energy physics. The Hamiltonian of the model contains a
coupling term connecting the two layers which is similar to the coupling
existing between two braneworlds at a quantum level. In the present case, this
term is related to a K-K' intervalley coupling. In addition, the experimental
observation of this effect could be a way to assess the relevance of some
theoretical concepts of the braneworld hypothesis.Comment: 15 pages, 3 figures, final version published in European Physical
Journal
Local fluctuations in quantum critical metals
We show that spatially local, yet low-energy, fluctuations can play an
essential role in the physics of strongly correlated electron systems tuned to
a quantum critical point. A detailed microscopic analysis of the Kondo lattice
model is carried out within an extended dynamical mean-field approach. The
correlation functions for the lattice model are calculated through a
self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled
both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field).
A renormalization-group treatment of this impurity problem--perturbative in
, where is an exponent characterizing the spectrum
of the bosonic bath--shows that competition between the two couplings can drive
the local-moment fluctuations critical. As a result, two distinct types of
quantum critical point emerge in the Kondo lattice, one being of the usual
spin-density-wave type, the other ``locally critical.'' Near the locally
critical point, the dynamical spin susceptibility exhibits scaling
with a fractional exponent. While the spin-density-wave critical point is
Gaussian, the locally critical point is an interacting fixed point at which
long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau
description for the locally critical point is discussed. It is argued that
these results are robust, that local criticality provides a natural description
of the quantum critical behavior seen in a number of heavy-fermion metals, and
that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text
corrected, version as publishe
Faraday rotation in graphene
We study magneto--optical properties of monolayer graphene by means of
quantum field theory methods in the framework of the Dirac model. We reveal a
good agreement between the Dirac model and a recent experiment on giant Faraday
rotation in cyclotron resonance. We also predict other regimes when the effects
are well pronounced. The general dependence of the Faraday rotation and
absorption on various parameters of samples is revealed both for suspended and
epitaxial graphene.Comment: 10 pp; v2: typos corrected and references added, v3, v4: small
changes and more reference
Ultrarelativistic electron-hole pairing in graphene bilayer
We consider ground state of electron-hole graphene bilayer composed of two
independently doped graphene layers when a condensate of spatially separated
electron-hole pairs is formed. In the weak coupling regime the pairing affects
only conduction band of electron-doped layer and valence band of hole-doped
layer, thus the ground state is similar to ordinary BCS condensate. At strong
coupling, an ultrarelativistic character of electron dynamics reveals and the
bands which are remote from Fermi surfaces (valence band of electron-doped
layer and conduction band of hole-doped layer) are also affected by the
pairing. The analysis of instability of unpaired state shows that s-wave
pairing with band-diagonal condensate structure, described by two gaps, is
preferable. A relative phase of the gaps is fixed, however at weak coupling
this fixation diminishes allowing gapped and soliton-like excitations. The
coupled self-consistent gap equations for these two gaps are solved at zero
temperature in the constant-gap approximation and in the approximation of
separable potential. It is shown that, if characteristic width of the pairing
region is of the order of magnitude of chemical potential, then the value of
the gap in the spectrum is not much different from the BCS estimation. However,
if the pairing region is wider, then the gap value can be much larger and
depends exponentially on its energy width.Comment: 13 pages with 8 figures; accepted to Eur. Phys. J.
- …
