15,202 research outputs found

    Spectra of primordial fluctuations in two-perfect-fluid regular bounces

    Full text link
    We introduce analytic solutions for a class of two components bouncing models, where the bounce is triggered by a negative energy density perfect fluid. The equation of state of the two components are constant in time, but otherwise unrelated. By numerically integrating regular equations for scalar cosmological perturbations, we find that the (would be) growing mode of the Newtonian potential before the bounce never matches with the the growing mode in the expanding stage. For the particular case of a negative energy density component with a stiff equation of state we give a detailed analytic study, which is in complete agreement with the numerical results. We also perform analytic and numerical calculations for long wavelength tensor perturbations, obtaining that, in most cases of interest, the tensor spectral index is independent of the negative energy fluid and given by the spectral index of the growing mode in the contracting stage. We compare our results with previous investigations in the literature.Comment: 11 pages, 5 figure

    Plane Gravitational Radiation from Neutrinos Source with Kalb-Ramond Coupling

    Full text link
    In this work, we propose a model based on a non-minimal coupling of neutrinos to a Kalb-Ramond field. The latter is taken as a possible source for gravitational radiation. As an immediate illustration of this system, we have studied the case where gravitational (plane) wave solutions behave as damped harmonic oscillators.Comment: Presented at 7th Alexander Friedmann International Seminar on Gravitation and Cosmology, Joao Pessoa, Brazil, 29-05 Jul 200

    Conductivity of suspended and non-suspended graphene at finite gate voltage

    Full text link
    We compute the DC and the optical conductivity of graphene for finite values of the chemical potential by taking into account the effect of disorder, due to mid-gap states (unitary scatterers) and charged impurities, and the effect of both optical and acoustic phonons. The disorder due to mid-gap states is treated in the coherent potential approximation (CPA, a self-consistent approach based on the Dyson equation), whereas that due to charged impurities is also treated via the Dyson equation, with the self-energy computed using second order perturbation theory. The effect of the phonons is also included via the Dyson equation, with the self energy computed using first order perturbation theory. The self-energy due to phonons is computed both using the bare electronic Green's function and the full electronic Green's function, although we show that the effect of disorder on the phonon-propagator is negligible. Our results are in qualitative agreement with recent experiments. Quantitative agreement could be obtained if one assumes water molelcules under the graphene substrate. We also comment on the electron-hole asymmetry observed in the DC conductivity of suspended graphene.Comment: 13 pages, 11 figure
    • …
    corecore