434 research outputs found

    Ashtekar's New Variables and Positive Energy

    Full text link
    We discuss earlier unsuccessful attempts to formulate a positive gravitational energy proof in terms of the New Variables of Ashtekar. We also point out the difficulties of a Witten spinor type proof. We then use the special orthonormal frame gauge conditions to obtain a locally positive expression for the New Variables Hamiltonian and thereby a ``localization'' of gravitational energy as well as a positive energy proof.Comment: 12 pages Plain Te

    Black Hole Solutions of Kaluza-Klein Supergravity Theories and String Theory

    Get PDF
    We find U(1)_{E} \times U(1)_{M} non-extremal black hole solutions of 6-dimensional Kaluza-Klein supergravity theories. Extremal solutions were found by Cveti\v{c} and Youm\cite{C-Y}. Multi black hole solutions are also presented. After electro-magnetic duality transformation is performed, these multi black hole solutions are mapped into the the exact solutions found by Horowitz and Tseytlin\cite{H-T} in 5-dimensional string theory compactified into 4-dimensions. The massless fields of this theory can be embedded into the heterotic string theory compactified on a 6-torus. Rotating black hole solutions can be read off those of the heterotic string theory found by Sen\cite{Sen3}.Comment: 23 pages text(latex), a figure upon reques

    Mass and Spin of Poincare Gauge Theory

    Get PDF
    We discuss two expressions for the conserved quantities (energy momentum and angular momentum) of the Poincar\'e Gauge Theory. We show, that the variations of the Hamiltonians, of which the expressions are the respective boundary terms, are well defined, if we choose an appropriate phase space for asymptotic flat gravitating systems. Furthermore, we compare the expressions with others, known from the literature.Comment: 16 pages, plain-tex; to be published in Gen. Rel. Gra

    Hamiltonian Analysis of Poincar\'e Gauge Theory: Higher Spin Modes

    Get PDF
    We examine several higher spin modes of the Poincar\'e gauge theory (PGT) of gravity using the Hamiltonian analysis. The appearance of certain undesirable effects due to non-linear constraints in the Hamiltonian analysis are used as a test. We find that the phenomena of field activation and constraint bifurcation both exist in the pure spin 1 and the pure spin 2 modes. The coupled spin-00^- and spin-22^- modes also fail our test due to the appearance of constraint bifurcation. The ``promising'' case in the linearized theory of PGT given by Kuhfuss and Nitsch (KRNJ86) likewise does not pass. From this analysis of these specific PGT modes we conclude that an examination of such nonlinear constraint effects shows great promise as a strong test for this and other alternate theories of gravity.Comment: 30 pages, submitted to Int. J. Mod. Phys.

    Quasi-local energy-momentum and energy flux at null infinity

    Full text link
    The null infinity limit of the gravitational energy-momentum and energy flux determined by the covariant Hamiltonian quasi-local expressions is evaluated using the NP spin coefficients. The reference contribution is considered by three different embedding approaches. All of them give the expected Bondi energy and energy flux.Comment: 14 pages, accepted by Phys.Rev.

    Hamiltonian analysis of Poincar\'e gauge theory scalar modes

    Full text link
    The Hamiltonian constraint formalism is used to obtain the first explicit complete analysis of non-trivial viable dynamic modes for the Poincar\'e gauge theory of gravity. Two modes with propagating spin-zero torsion are analyzed. The explicit form of the Hamiltonian is presented. All constraints are obtained and classified. The Lagrange multipliers are derived. It is shown that a massive spin-00^- mode has normal dynamical propagation but the associated massless 00^- is pure gauge. The spin-0+0^+ mode investigated here is also viable in general. Both modes exhibit a simple type of ``constraint bifurcation'' for certain special field/parameter values.Comment: 28 pages, LaTex, submitted to International Journal of Modern Physics

    Poincare gauge theory of gravity: Friedman cosmology with even and odd parity modes. Analytic part

    Full text link
    We propose a cosmological model in the framework of the Poincar\'e gauge theory of gravity (PG). The gravitational Lagrangian is quadratic in curvature and torsion. In our specific model, the Lagrangian contains (i) the curvature scalar RR and the curvature pseudo-scalar XX linearly and quadratically (including an RXRX term) and (ii) pieces quadratic in the torsion {\it vector} V\cal V and the torsion {\it axial} vector A\cal A (including a VA{\cal V}{\cal A} term). We show generally that in quadratic PG models we have nearly the same number of parity conserving terms (`world') and of parity violating terms (`shadow world'). This offers new perspectives in cosmology for the coupling of gravity to matter and antimatter. Our specific model generalizes the fairly realistic `torsion cosmologies' of Shie-Nester-Yo (2008) and Chen et al.\ (2009). With a Friedman type ansatz for an orthonormal coframe and a Lorentz connection, we derive the two field equations of PG in an explicit form and discuss their general structure in detail. In particular, the second field equation can be reduced to first order ordinary differential equations for the curvature pieces R(t)R(t) and X(t)X(t). Including these along with certain relations obtained from the first field equation and curvature definitions, we present a first order system of equations suitable for numerical evaluation. This is deferred to the second, numerical part of this paper.Comment: Latex computerscript, 25 pages; mistakes corrected, references added, notation and title slightly changed; accepted by Phys. Rev.

    Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity

    Full text link
    We show that the Einstein-aether theory of Jacobson and Mattingly (J&M) can be understood in the framework of the metric-affine (gauge theory of) gravity (MAG). We achieve this by relating the aether vector field of J&M to certain post-Riemannian nonmetricity pieces contained in an independent linear connection of spacetime. Then, for the aether, a corresponding geometrical curvature-square Lagrangian with a massive piece can be formulated straightforwardly. We find an exact spherically symmetric solution of our model.Comment: Revtex4, 38 pages, 1 figur

    Conservation laws in the teleparallel theory of gravity

    Get PDF
    We study the conservation laws associated with the asymptotic Poincare symmetry of spacetime in the general teleparallel theory of gravity. Demanding that the canonical Poincare generators have well defined functional derivatives in a properly defined phase space, we obtain the improved form of the generators, containing certain surface terms. These terms are shown to represent the values of the related conserved charges: energy-momentum and angular momentum.Comment: 22 pages, RevTex, discussion of the angular momentum of the Dirac source solution corrected, twelve references adde
    corecore