1,647 research outputs found

    Simulation of Chua's Circuit by Means of Interval Analysis

    Full text link
    The Chua's circuit is a paradigm for nonlinear scientific studies. It is usually simulated by means of numerical methods under IEEE 754-2008 standard. Although the error propagation problem is well known, little attention has been given to the relationship between this error and inequalities presented in Chua's circuit model. Taking the average of round mode towards +∞+\infty and −∞-\infty, we showed a qualitative change on the dynamics of Chua's circuit.Comment: 6th International Conference on Nonlinear Science and Complexity - S\~ao Jos\'e dos Campos, 2016, p. 1-

    Strong evidences for a nonextensive behavior of the rotation period in Open Clusters

    Full text link
    Time-dependent nonextensivity in a stellar astrophysical scenario combines nonextensive entropic indices qKq_{K} derived from the modified Kawaler's parametrization, and qq, obtained from rotational velocity distribution. These qq's are related through a heuristic single relation given by q≈q0(1−Δt/qK)q\approx q_{0}(1-\Delta t/q_{K}), where tt is the cluster age. In a nonextensive scenario, these indices are quantities that measure the degree of nonextensivity present in the system. Recent studies reveal that the index qq is correlated to the formation rate of high-energy tails present in the distribution of rotation velocity. On the other hand, the index qKq_{K} is determined by the stellar rotation-age relationship. This depends on the magnetic field configuration through the expression qK=1+4aN/3q_{K}=1+4aN/3, where aa and NN denote the saturation level of the star magnetic field and its topology, respectively. In the present study, we show that the connection q−qKq-q_{K} is also consistent with 548 rotation period data for single main-sequence stars in 11 Open Clusters aged less than 1 Gyr. The value of qK∼q_{K}\sim 2.5 from our unsaturated model shows that the mean magnetic field topology of these stars is slightly more complex than a purely radial field. Our results also suggest that stellar rotational braking behavior affects the degree of anti-correlation between qq and cluster age tt. Finally, we suggest that stellar magnetic braking can be scaled by the entropic index qq.Comment: 6 pages and 2 figures, accepted to EPL on October 17, 201

    A nonextensive insight to the stellar initial mass function

    Full text link
    the present paper, we propose that the stellar initial mass distributions as known as IMF are best fitted by qq-Weibulls that emerge within nonextensive statistical mechanics. As a result, we show that the Salpeter's slope of ∼\sim2.35 is replaced when a qq-Weibull distribution is used. Our results point out that the nonextensive entropic index qq represents a new approach for understanding the process of the star-forming and evolution of massive stars.Comment: 5 pages, 2 figures, Accepted to EP

    Subtracting and Fitting Histograms using Profile Likelihood

    Get PDF
    It is known that many interesting signals expected at LHC are of unknown shape and strongly contaminated by background events. These signals will be dif cult to detect during the rst years of LHC operation due to the initial low luminosity. In this work, one presents a method of subtracting histograms based on the pro le likelihood function when the background is previously estimated by Monte Carlo events and one has low statistics. Estimators for the signal in each bin of the histogram difference are calculated so as limits for the signals with 68.3% of Con dence Level in a low statistics case when one has a exponential background and a Gaussian signal. The method can also be used to t histograms when the signal shape is known. Our results show a good performance and avoid the problem of negative values when subtracting histograms
    • …
    corecore