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Abstract

It is known that many interesting signals expected at LHC are of unknown
shape and strongly contaminated by background events. These signals will
be difficult to detect during the first years of LHC operation due to the initial
low luminosity. In this work, one presents a method of subtracting histograms
based on the profile likelihood function when the background is previously
estimated by Monte Carlo events and one has low statistics. Estimators for
the signal in each bin of the histogram difference are calculated so as limits
for the signals with 68.3% of Confidence Level in a low statistics case when
one has a exponential background and a Gaussian signal. The method can also
be used to fit histograms when the signal shape is known. Our results show a
good performance and avoid the problem of negative values when subtracting
histograms.

1 Introduction

The search for signals of low statistics has led to a strong development on statistics methods for high
energy physics. Recently, methods based on profile likelihood has been widely used in problems related
to setting limits to a signal and to test hypotheses. This approach shows very good performance in
extracting signal information in the presence of nuisance parameters [1].

In this work one considers a x2-function obtained from the profile likelihood for subtracting his-
tograms where the signal to backgrounds ration is small, and both distribution have unknown shape.
One also shows that, when the signal distribution is known, one can use this y 2-function to fit the signal
without fitting the background. It is presented in the next Section the road map to this new  2-function.
Section 3 presents the results for extracting signal information by subtracting histograms, and limits to
signal are computed using the proposed y 2-function. Section 4 shows an example on the fit method.

2 Likelihood and Profile Likelihood

Let us assume a counting experiment such that the signal and background events are completely indepen-
dent and both obey to Poisson distributions. The background events are first estimated using the Monte
Carlo method, running the experiment in "idle" mode or by any other technique. Suppose that during
the experiment k data events are obtained and that m background events were previously estimated us-
ing Monte CarloMC) techniques. Since the number of previously estimated MC events depends on
computational resources, it is possible to generate 7 samples, such that

T =Lmc/Lexp, )]

where Lexp and L ¢ are the experimental and MC luminosities, respectively, and 7 > 0. When one
has limited computer resources, 7 may be restricted 7 to the range 0 < 7 < 1. Any information about
the background is helpful in order to extract as clean a signal as possible. The likelihood corresponding
to the above discussion is

L(s,b;k,m,7) < (s + b)ke_(s+b) (Tb)me_Tb, 2

where s and b are related to the signal and background distributions, respectively.
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To obtain a b independent likelihood, one can find the maximum likelihood estimator of the back-
ground b as a function of s and replace the true value b by b in Eq. (2). Taking the derivative of that
equation, and solving it for b > 0, one gets

5(5) o (07 k+m —2((114_—'_7;))5 + A(s)> 7 3)
where
A(s) = \/[k+m—(1+7)s]2+4m(1+7')3 > 0. “

Replacing b by 3(5) in Eq. (2), one obtains the profile likelihood L p(s; k, m, 7), which does not depen-
dent on b [2].

Lp(sik,m,7) o< (s + b(s))Fe~ 06 (7h(5))me=0) )

The maximum value of Lp and the most probable value of s, s, are obtained by solving Eq (5). The
simple analytical solution for S is an unbiased value

s = max (O,k—m> , (6)

T

since s > 0 due to physical constrains. The parameter s is just the maximum profile likelihood estimator
of s.

Let us construct now an approximate 2-function using Eq (5). The maximum profile likelihood
ratio is given by

_ Lp(s,k,m,7)
© Lp(s,k,m,T)’

where the denominator is the maximum profile likelihood, which occurs when s = 5. According to the
maximum likelihood ratio theorem X?: ~ —2log Ap and hence, the profile X%—function is written as

Ap (7

2 = $s—35 T b(s) — b3 n 7?—1—3(’3‘) mln @
XP—2{< )+ (r+1) (b(s) = 5(3) ) + k1 <s+3<s>)+ 1 (3(8)>}7 ®)

where 3(5) and 5 are given by Eqs (3,6), respectively, so as 3(?)

3 Subtracting Histograms and Setting Limits

In order to show the applicability of the X%D—function obtained we generated 500 Toy Monte Carlo events,
such that 50 were signal and 450 were background, distributed in a histogram of 50 bins. The signal and
background were generated according to Gaussian and Exponential functions, respectively,

S ~ Gauss(1.2,0.2), B ~ Exp(—x). )

The number of background events in each bin was previously estimated by generating 2250 back-
ground events, corresponding to 7 = 5. It is useful to mention at this point that there is no advantage in
taking 7 > 5 when one estimates the background from MC, since there is no relevant change in the X%,—
function for 7 > 5. Figure 1 shows the ’data’, the background previously estimated and the signal. To
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extract the signal histogram from the ’data’, one can use Eq (6), which give us the signal estimated for
each bin. Its limits (S;in, Smaz) are obtained by solving the system

[Zmes fp(sik,m,T)ds =1 —«

Smin

2 (Smin) = X2 (10)
Xp(8min) = XP(Smaz)
0 S Smin < Smaz

where fp(s;k,m, ) is the normalized probability distribution of s given k, m and 7 obtained normaliz-
ing Lp(s; k.m, ) with respect to s, and « depends on the chosen confidence level.
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Fig. 1: Toy Monte Carlo Example. The full line rep-
resents the signal contained in the ’data’. The back-
ground was previously estimated with 7 = 5.

Fig. 2: Extracted signal. The signal limits were calcu-
lated for a confidence level of 68.3%. The constraining
5 > 0 avoid bins with negative values.

The subtracted histogram result is shown in Fig. 2. The points are the signal estimated for each bin
and the error bars were calculated using Eq (10) for a confidence level of 68.3%. Notice that we have no
bin with negative values due the constraint 5 > 0. It is important to mention also that one did not need
to know the true background rate b in order to get signal limits, since the X%—function, given by Eq. (8),
does not depend on that parameter since it has been replaced by an estimate.

The signal significance can be obtained by looking at the P-value under the hypothesis that one
has no signal. Taking into account just the bins between z = 0.85 and x = 2.5, one gets a P-value of
0.022.

4 Fitting Histograms

When the signal shape is known, one can use Eq. (8) to fit histograms. In such case, the X%D—function that
will be minimized is given by the sum of all X?Di (84, ki, m;, T) which correspond to /N bin contributions,
where s; must be substituted by the function f(z;, @) to be fit, x; being the corresponding ordinate in the
it" bin and @ the parameter vector to be fitted.

One can apply this approach to fit the signal in the Monte Carlo sample shown before, but now the
events are distributed in a histogram of 100 bins, since one knows now the signal distribution shape, as
shown in Fig. 3. The number of previously estimated background events in each bin m; is given by the
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Fig. 3: Previously estimated background, ‘data’ and fitted curve.

histogram labeled BG in Fig. 3, and k; is the number of ’data’ events in each bin. The signal distribution
s; is substituted by a Gaussian function, and 7 = 5. By the minimization of the X%—function, one gets
the fitted parameters 4 = 1.19 £ 0.08 and o0 = 0.21 £ 0.07, which are in very good agreement with
the “true” values 1.2 and 0.2, respectively. The full line in Fig. 3 shows the fitted curve.

Notice that as Eq. (8) depends just on f(z;,8), k;, m; and 7, one did not need to fit the back-
ground distribution, and the only necessary information from background was its number of events m;
estimated by MC. This is the great advantage of this method. The Xfp—function already incorporates
the background statistical fluctuations. Besides reducing the numbers of fitted parameters, this method
presents no problems when one has few or no events in one or more bins as can occur in data with long
tails. Even the bins with k; = 0 and/or m; = 0 contributes to the X%—function. It is is only necessary to
fit the signal function parameters which will allow us to obtain a much cleaner and less noisy analysis.
This will affect in a positive way the parameter covariance matrix. A systematic study of this method
was done for different 7 values and different signal and background distributions, and in all cases the
method showed very good performance.

5 Summary

The proposed X%—function can be used to extract signal information without need to know the back-
ground distribution shape. The fact that one just needs to fit the signal reduce the number of parameters
to be fitted and avoid the uncertainties carrying by the lack of knowledge of the exact background pa-
rameters. The method works well even in situation where there is very low statistics.
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