12 research outputs found

    Criteria for effective zero-deforestation commitments

    Get PDF
    Zero-deforestation commitments are a type of voluntary sustainability initiative that companies adopt to signal their intention to reduce or eliminate deforestation associated with commodities that they produce, trade, and/or sell. Because each company defines its own zero-deforestation commitment goals and implementation mechanisms, commitment content varies widely. This creates challenges for the assessment of commitment implementation or effectiveness. Here, we develop criteria to assess the potential effectiveness of zero-deforestation commitments at reducing deforestation within a company supply chain, regionally, and globally. We apply these criteria to evaluate 52 zero-deforestation commitments made by companies identified by Forest 500 as having high deforestation risk. While our assessment indicates that existing commitments converge with several criteria for effectiveness, they fall short in a few key ways. First, they cover just a small share of the global market for deforestation-risk commodities, which means that their global impact is likely to be small. Second, biome-wide implementation is only achieved in the Brazilian Amazon. Outside this region, implementation occurs mainly through certification programs, which are not adopted by all producers and lack third-party near-real time deforestation monitoring. Additionally, around half of all commitments include zero-net deforestation targets and future implementation deadlines, both of which are design elements that may reduce effectiveness. Zero-net targets allow promises of future reforestation to compensate for current forest loss, while future implementation deadlines allow for preemptive clearing. To increase the likelihood that commitments will lead to reduced deforestation across all scales, more companies should adopt zero-gross deforestation targets with immediate implementation deadlines and clear sanction-based implementation mechanisms in biomes with high risk of forest to commodity conversion.ISSN:0959-3780ISSN:1872-949

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world

    From climate-smart agriculture to climate-smart landscapes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For agricultural systems to achieve climate-smart objectives, including improved food security and rural livelihoods as well as climate change adaptation and mitigation, they often need to be take a landscape approach; they must become ‘climate-smart landscapes’. Climate-smart landscapes operate on the principles of integrated landscape management, while explicitly incorporating adaptation and mitigation into their management objectives.</p> <p>Results</p> <p>An assessment of climate change dynamics related to agriculture suggests that three key features characterize a climate-smart landscape: climate-smart practices at the field and farm scale; diversity of land use across the landscape to provide resilience; and management of land use interactions at landscape scale to achieve social, economic and ecological impacts. To implement climate-smart agricultural landscapes with these features (that is, to successfully promote and sustain them over time, in the context of dynamic economic, social, ecological and climate conditions) requires several institutional mechanisms: multi-stakeholder planning, supportive landscape governance and resource tenure, spatially-targeted investment in the landscape that supports climate-smart objectives, and tracking change to determine if social and climate goals are being met at different scales. Examples of climate-smart landscape initiatives in Madagascar’s Highlands, the African Sahel and Australian Wet Tropics illustrate the application of these elements in contrasting contexts.</p> <p>Conclusions</p> <p>To achieve climate-smart landscape initiatives widely and at scale will require strengthened technical capacities, institutions and political support for multi-stakeholder planning, governance, spatial targeting of investments and multi-objective impact monitoring.</p

    Systemic perspectives on scaling agricultural innovations. A review

    No full text

    Ekzeme und ekzematoide Dermatitiden im frühen Kindesalter

    No full text
    corecore