488 research outputs found

    Metallic liquid hydrogen and likely Al2O3 metallic glass

    Full text link
    Dynamic compression has been used to synthesize liquid metallic hydrogen at 140 GPa (1.4 million bar) and experimental data and theory predict Al2O3 might be a metallic glass at ~300 GPa. The mechanism of metallization in both cases is probably a Mott-like transition. The strength of sapphire causes shock dissipation to be split differently in the strong solid and soft fluid. Once the 4.5-eV H-H and Al-O bonds are broken at sufficiently high pressures in liquid H2 and in sapphire (single-crystal Al2O3), electrons are delocalized, which leads to formation of energy bands in fluid H and probably in amorphous Al2O3. The high strength of sapphire causes shock dissipation to be absorbed primarily in entropy up to ~400 GPa, which also causes the 300-K isotherm and Hugoniot to be virtually coincident in this pressure range. Above ~400 GPa shock dissipation must go primarily into temperature, which is observed experimentally as a rapid increase in shock pressure above ~400 GPa. The metallization of glassy Al2O3, if verified, is expected to be general in strong oxide insulators. Implications for Super Earths are discussed.Comment: 8 pages, 5 figures, 14th Liquid and Amorphous Metals Conference, Rome 201

    Metallization of Fluid Hydrogen

    Full text link
    The electrical resistivity of liquid hydrogen has been measured at the high dynamic pressures, densities and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 GPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) processes in which structural changes are paramount.Comment: 12 pages, RevTeX format. Figures available on request; send mail to: [email protected] To appear: Philosophical Transaction of the Royal Society

    Entropy-Dominated Dissipation in Sapphire Shock-Compressed up to 400 GPa (4 Mbar)

    Full text link
    Sapphire (single-crystal Al2O3) is a representative Earth material and is used as a window and/or anvil in shock experiments. Pressure, for example, at the core-mantle boundary is about 130 gigapascals (GPa). Defects induced by 100-GPa shock waves cause sapphire to become opaque, which precludes measuring temperature with thermal radiance. We have measured wave profiles of sapphire crystals with several crystallographic orientations at shock pressures of 16, 23, and 86 GPa. At 23 GPa plastic-shock rise times are generally quite long (~100 ns) and their values depend sensitively on the direction of shock propagation in the crystal lattice. The long rise times are probably caused by the high strength of inter-atomic interactions in the ordered three-dimensional sapphire lattice. Our wave profiles and recent theoretical and laser-driven experimental results imply that sapphire disorders without significant shock heating up to about 400 GPa, above which Al2O3 is amorphous and must heat. This picture suggests that the characteristic shape of shock compression curves of many Earth materials at 100 GPa pressures is caused by a combination of entropy and temperature.Comment: 12 pages, 4 figure

    Case management and Think First completion

    Get PDF
    “The final, definitive version of this article has been published in the Journal, Probation Journal, Vol 53 Issue 3, 2006, Copyright The Trade Union and Professional Association for Family Court and Probation Staff, by SAGE Publications Ltd at: http://prb.sagepub.com/ " DOI: 10.1177/0264550506066771This article considers the findings of a small-scale study of the practice of case managers supervising offenders required to attend the Think First Group. It explores the interface between one-to-one and group-based work within multi-modal programmes of supervision and seeks to identify those practices that support individuals in completing a group.Peer reviewe

    Evolution of Ultracold, Neutral Plasmas

    Get PDF
    We present the first large-scale simulations of an ultracold, neutral plasma, produced by photoionization of laser-cooled xenon atoms, from creation to initial expansion, using classical molecular dynamics methods with open boundary conditions. We reproduce many of the experimental findings such as the trapping efficiency of electrons with increased ion number, a minimum electron temperature achieved on approach to the photoionization threshold, and recombination into Rydberg states of anomalously-low principal quantum number. In addition, many of these effects establish themselves very early in the plasma evolution (\sim ns) before present experimental observations begin.Comment: 4 pages, 3 figures, submitted to PR

    BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome

    Get PDF
    BioDrugScreen is a resource for ranking molecules docked against a large number of targets in the human proteome. Nearly 1600 molecules from the freely available NCI diversity set were docked onto 1926 cavities identified on 1589 human targets resulting in >3 million receptor–ligand complexes requiring >200 000 cpu-hours on the TeraGrid. The targets in BioDrugScreen originated from Human Cancer Protein Interaction Network, which we have updated, as well as the Human Druggable Proteome, which we have created for the purpose of this effort. This makes the BioDrugScreen resource highly valuable in drug discovery. The receptor–ligand complexes within the database can be ranked using standard and well-established scoring functions like AutoDock, DockScore, ChemScore, X-Score, GoldScore, DFIRE and PMF. In addition, we have scored the complexes with more intensive GBSA and PBSA approaches requiring an additional 120 000 cpu-hours on the TeraGrid. We constructed a simple interface to enable users to view top-ranking molecules and access purchasing and other information for further experimental exploration

    Structural Phase Transition at High Temperatures in Solid Molecular Hydrogen and Deuterium

    Full text link
    We study the effect of temperature up to 1000K on the structure of dense molecular para-hydrogen and ortho-deuterium, using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close packed (hcp) to an orthorhombic structure of Cmca symmetry before melting. The transition is basically induced by thermal fluctuations, but quantum fluctuations of protons (deuterons) are important in determining the transition temperature through effectively hardening the intermolecular interaction. We estimate the phase line between hcp and Cmca phases as well as the melting line of the Cmca solid.Comment: 8 pages, 7 figures; accepted in Phys. Rev.

    The Coupled Electronic-Ionic Monte Carlo Simulation Method

    Get PDF
    Quantum Monte Carlo (QMC) methods such as Variational Monte Carlo, Diffusion Monte Carlo or Path Integral Monte Carlo are the most accurate and general methods for computing total electronic energies. We will review methods we have developed to perform QMC for the electrons coupled to a classical Monte Carlo simulation of the ions. In this method, one estimates the Born-Oppenheimer energy E(Z) where Z represents the ionic degrees of freedom. That estimate of the energy is used in a Metropolis simulation of the ionic degrees of freedom. Important aspects of this method are how to deal with the noise, which QMC method and which trial function to use, how to deal with generalized boundary conditions on the wave function so as to reduce the finite size effects. We discuss some advantages of the CEIMC method concerning how the quantum effects of the ionic degrees of freedom can be included and how the boundary conditions can be integrated over. Using these methods, we have performed simulations of liquid H2 and metallic H on a parallel computer.Comment: 27 pages, 10 figure
    corecore