60 research outputs found

    Sediment removal by prairie filter strips in row-cropped ephemeral watersheds

    Get PDF
    Twelve small watersheds in central Iowa were used to evaluate the effectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips) arranged in a balanced incomplete block design were seeded in July 2007. All watersheds were in bromegrass ( L.) for at least 10 yr before treatment establishment. Cropped areas were managed under a no-till, 2-yr corn ( L.)-soybean [ (L.) Merr.] rotation beginning in 2007. About 38 to 85% of the total sediment export from cropland occurred during the early growth stage of rowcrop due to wet field conditions and poor ground cover. The greatest sediment load was observed in 2008 due to the initial soil disturbance and gradually decreased thereafter. The mean annual sediment yield through 2010 was 0.36 and 8.30 Mg ha for the watersheds with and without PFS, respectively, a 96% sediment trapping efficiency for the 4-yr study period. The amount and distribution of PFS had no significant impact on runoff and sediment yield, probably due to the relatively large width (37-78 m) of footslope PFS. The findings suggest that incorporation of PFS at the footslope position of annual rowcrop systems provides an effective approach to reducing sediment loss in runoff from agricultural watersheds under a no-till system

    The importance and challenge of modeling irrigation-induced erosion

    Get PDF
    Irrigation-induced erosion and rain-induced erosion result from very different systematics. Therefore, both cannot be predicted effectively using the same models. The average two-fold yield and three-fold economic advantage of irrigation over rain-fed agriculture, coupled with the fragility of irrigated land and the strategic importance of irrigation development to meet world agricultural production needs, has raised the urgency for the development of robust, accurate, and precise irrigation-induced erosion models. This paper details the rationale for separate irrigation-induced erosion models, presents essential aspects unique to irrigation that must be accounted for in the models, and summarizes the progress (to date) toward the goal of irrigation-induced erosion model development
    corecore