4 research outputs found

    Anti-Inflammatory Effect of Fluvastatin on IL-8 Production Induced by Pseudomonas aeruginosa and Aspergillus fumigatus Antigens in Cystic Fibrosis

    Get PDF
    International audienceBACKGROUND: Early in life, patients with cystic fibrosis (CF) are infected with microorganisms including bacteria and fungi, particularly Pseudomonas aeruginosa and Aspergillus fumigatus. Since recent research has identified the anti-inflammatory properties of statins (besides their lipid-lowering effects), we investigated the effect of fluvastatin on the production of the potent neutrophil chemoattractant chemokine, IL-8, in whole blood from CF patients, stimulated by Pseudomonas aeruginosa (LPS) and Aspergillus fumigatus (AFA) antigens. RESULTS: Whole blood from adult patients with CF and from healthy volunteers was collected at the Rennes University Hospital (France). Blood was pretreated for 1 h with fluvastatin (0-300 µM) and incubated for 24 h with LPS (10 µg/mL) and/or AFA (diluted 1/200). IL-8 protein levels, quantified by ELISA, were increased in a concentration-dependent manner when cells were stimulated by LPS or AFA. Fluvastatin strongly decreased the levels of IL-8, in a concentration-dependent manner, in whole blood from CF patients. However, its inhibitory effect was decreased or absent in whole blood from healthy subjects. Furthermore, the inhibition induced by fluvastatin in CF whole blood was reversed in the presence of intermediates within the cholesterol biosynthesis pathway, mevalonate, farnesyl pyprophosphate or geranylgeranyl pyrophosphate that activate small GTPases by isoprenylation. CONCLUSIONS: For the first time, the inhibitory effects of fluvastatin on CF systemic inflammation may reveal the important therapeutic potential of statins in pathological conditions associated with the over-production of pro-inflammatory cytokines and chemokines as observed during the manifestation of CF. The anti-inflammatory effect could be related to the modulation of the prenylation of signalling proteins

    Interferon Îł Stimulates Accumulation of Gas Phase Nitric Oxide in Differentiated Cultures of Normal and Cystic Fibrosis Airway Epithelial Cells

    No full text
    BACKGROUND: Exhaled nitric oxide (NO) levels have been reported to be lower in patients with cystic fibrosis (CF) than in controls; however the mechanism(s) responsible and the effect on pathogenesis are unclear. The objective of these studies was to determine if the low levels of gas phase NO (gNO) could be reproduced in well-differentiated air–liquid interface (ALI) cultures of normal and CF cells. METHODS: Human bronchial epithelial (HBE) cells from CF and control tissues were cultured under ALI conditions that promote differentiation into a mostly ciliated, pseudostratified epithelium similar to that of the in vivo airway. Cultures were incubated in gas tight chambers and the concentration of gNO was measured using a Sievers nitric oxide analyzer. RESULTS: In CF and control cultures the level of accumulated gNO under baseline conditions was low (<20 ppb). Treatment with interferon gamma (IFNγ) induced iNOS expression and increased gNO significantly in differentiated cultures, while having no significant effect on undifferentiated cultures. Submersion of the apical surface with fluid drastically reduced the level of gNO. Importantly, the average level of gNO measured after IFNγ treatment of control cells (576 ppb) was threefold greater than that from CF cells (192 ppb). CONCLUSIONS: The results demonstrate that the lower level of exhaled NO observed in CF patients is reproduced in well-differentiated primary cultures of HBE cells treated with IFNγ, supporting the hypothesis that the regulation of NO production is altered in CF. The results also demonstrate that IFNγ treatment of differentiated cells results in higher levels of gNO than treatment of undifferentiated cells, and that a layer of fluid on the apical surface drastically reduces the amount of gNO, possibly by limiting the availability of oxygen

    Airway Epithelium

    No full text
    corecore