11 research outputs found
Functional characterization of a StyS sensor kinase reveals distinct domains associated with intracellular and extracellular sensing of styrene in P. putida
Anti-atherosclerotic effects of the glucagon-like peptide-1 (GLP-1) based therapies in patients with type 2 Diabetes Mellitus: A meta-analysis
Protein Folding as a Complex Reaction: A Two-Component Potential for the Driving Force of Folding and Its Variation with Folding Scenario
Medial arterial calcification in diabetes and its relationship to neuropathy
Udgivelsesdato: 2009-DecCalcification of the media of arterial walls is common in diabetes and is particularly associated with distal symmetrical neuropathy. Arterial calcification also complicates chronic kidney disease and is an independent risk factor for cardiovascular and all-cause mortality. The term calcification is not strictly accurate because the morphological changes incorporate those of new bone formation, i.e. ossification. The processes are complex, but are closely related to those involved in bone homeostasis, and it is relevant that calcification of the arterial wall and osteopenia often co-exist. One particular factor linked to the development of arterial calcification is distal symmetrical neuropathy; indeed, it has been suggested that neuropathy explains the distal distribution of arterial calcification in diabetes. It has also been suggested that the link with neuropathy results from loss of neuropeptides, such as calcitonin gene-related peptide, which are inherently protective. The association between distal symmetrical neuropathy and calcification of the arterial wall highlights the fact that neuropathy may be an independent risk factor for cardiovascular mortality
Biochemistry and Genetics of Bacterial Bioluminescence
Bacterial light production involves enzymes-luciferase, fatty acid reductase, and flavin reductase-and substrates-reduced flavin mononucleotide and long-chain fatty aldehyde-that are specific to bioluminescence in bacteria. The bacterial genes coding for these enzymes, luxA and luxB for the subunits of luciferase; luxC, luxD, and luxE for the components of the fatty acid reductase; and luxG for flavin reductase, are found as an operon in light-emitting bacteria, with the gene order, luxCDABEG. Over 30 species of marine and terrestrial bacteria, which cluster phylogenetically in Aliivibrio, Photobacterium, and Vibrio (Vibrionaceae), Shewanella (Shewanellaceae), and Photorhabdus (Enterobacteriaceae), carry lux operon genes. The luminescence operons of some of these bacteria also contain genes involved in the synthesis of riboflavin, ribEBHA, and in some species, regulatory genes luxI and luxR are associated with the lux operon. In well-studied cases, lux genes are coordinately expressed in a population density-responsive, self-inducing manner called quorum sensing. The evolutionary origins and physiological function of bioluminescence in bacteria are not well understood but are thought to relate to utilization of oxygen as a substrate in the luminescence reaction
