13 research outputs found

    Ultrasonic Characterization of Porosity in Composites

    Get PDF
    The determination of levels of porosity is important in the engineering uses of graphite fiber/polymer matrix composites, since the interlaminar shear strength can be greatly reduced by excessive porosity [1]. Research in making nondestructive evaluations using ultrasonics as the probing energy has taken many directions. Hsu [2] has successfully modeled the frequency dependent attenuation to predict porosity levels in composites. Kline [3] has extended the work of Hashsin and Rosen [4] to determine the porosity and fiber volume fraction of composites by solving for the elastic coefficients of the composite structure. The propagation of leaky Lamb waves [5] has also been used to model porosity levels

    Graphite Epoxy Defect Classification of Ultrasonic Signatures Using Statistical and Neural Network Techniques

    Full text link
    The use of graphite epoxy composite materials in thick sections for structural applications in naval vessels is achieving worldwide interest [1]. Current and future applications of composites include construction of hulls, superstructures, weight critical articles, secondary structures and quasi-structural components.</p

    Fibre Distribution and the Process-Property Dilemma

    Get PDF
    The options for the fibre reinforcement of polymer matrix composites cover a range from short-fibre chopped strand mat, through woven fabric to unidirectional pre-impregnated (prepreg) reinforcements. The modelling of such materials may be simplified by assumptions such as perfect regular packing of fibres and the total absence of fibre waviness. However, these and other features such as the crimp or waviness in woven fabrics make real materials more complex than the simplified models. Clustering of fibres creates fibre-rich and resin-rich volumes (FRV and RRV respectively) in the composites. Prior to impregnation, large RRV will be pore-space that can expedite the flow of resin in liquid composite moulding processes (especially resin transfer moulding (RTM) and resin infusion under flexible tooling (RIFT). In the composite, the clustering of fibres tends to reduce the mechanical properties. The use of image processing and analysis can permit micro-/meso-structural characterisation which may correlate to the respective properties. This chapter considers the quantification of microstructure images in the context of the process-property dilemma for woven carbon-fibre reinforced composites with the aim of increasing understanding of the balance between processability and mechanical performance

    Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth

    No full text
    Aims: Few direct tests of phosphorus (P) limitation on highly-weathered soils have been conducted, especially in mature, native Eucalyptus stands. We tested whether growth in a mature >80-year old stand of Eucalyptus tereticornis in Cumberland Plain Woodland was limited by P, and whether this P-limitation affected leaf photosynthetic capacity. Methods: P was added to trees at the native woodland site at 50 kg ha-1 year-1 in each of 3 years, and stem and leaf responses were measured. Results: Leaf P concentrations before fertilisation were 2], because photosynthesis in elevated [CO2] may become further constrained by required phosphate pools within the photosynthetic apparatus
    corecore