80 research outputs found

    Fusion Techniques in Biomedical Information Retrieval

    Get PDF
    For difficult cases clinicians usually use their experience and also the information found in textbooks to determine a diagnosis. Computer tools can help them supply the relevant information now that much medical knowledge is available in digital form. A biomedical search system such as developed in the Khresmoi project (that this chapter partially reuses) has the goal to fulfil information needs of physicians. This chapter concentrates on information needs for medical cases that contain a large variety of data, from free text, structured data to images. Fusion techniques will be compared to combine the various information sources to supply cases similar to an example case given. This can supply physicians with answers to problems similar to the one they are analyzing and can help in diagnosis and treatment planning

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    Myocardial changes in incident haemodialysis patients over 6-months:an observational cardiac magnetic resonance imaging study

    Get PDF
    Patients commencing on haemodialysis (HD) have an increased risk of cardiovascular events in the first year after starting HD compared to those patients established on HD longer. Left ventricular (LV) hypertrophy and abnormal myocardial strain predict mortality. There may be changes in the myocardium of incident HD patients over a 6-month period of HD which may explain changes in cardiovascular risk. We used CMR to consider changes in LV mass, myocardial strain and T1 mapping. We examined changes in pre-dialysis highly sensitive troponin T. 33 patients undergoing HD for <12 months were recruited. Participants underwent CMR at baseline and after 6-months of standard care. 6-months of HD was associated with reduction in LV mass index (Baseline: 78.8 g/m2 follow up: 69.9 g/m2, p = <0.001). LV global longitudinal strain also improved (Baseline: −17.9%, follow up: −21.6%, p = <0.001). Change in T1 time was not significant (Baseline septal T1 1277.4 ms, follow up 1271.5 p = 0.504). Highly sensitive troponin T was lower at follow up (Baseline 38.8 pg/L, follow up 30.8 pg/L p = 0.02). In incident HD patients, 6-months of HD was associated with improvements in LV mass, strain and troponin. These findings may reflect improvement in known cardiac tissue abnormalities found in patients over the first year of HD

    Ribosomal DNA Deletions Modulate Genome-Wide Gene Expression: “rDNA–Sensitive” Genes and Natural Variation

    Get PDF
    The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation

    Are decision trees a feasible knowledge representation to guide extraction of critical information from randomized controlled trial reports?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper proposes the use of decision trees as the basis for automatically extracting information from published randomized controlled trial (RCT) reports. An exploratory analysis of RCT abstracts is undertaken to investigate the feasibility of using decision trees as a semantic structure. Quality-of-paper measures are also examined.</p> <p>Methods</p> <p>A subset of 455 abstracts (randomly selected from a set of 7620 retrieved from Medline from 1998 – 2006) are examined for the quality of RCT reporting, the identifiability of RCTs from abstracts, and the completeness and complexity of RCT abstracts with respect to key decision tree elements. Abstracts were manually assigned to 6 sub-groups distinguishing whether they were primary RCTs versus other design types. For primary RCT studies, we analyzed and annotated the reporting of intervention comparison, population assignment and outcome values. To measure completeness, the frequencies by which complete intervention, population and outcome information are reported in abstracts were measured. A qualitative examination of the reporting language was conducted.</p> <p>Results</p> <p>Decision tree elements are manually identifiable in the majority of primary RCT abstracts. 73.8% of a random subset was primary studies with a single population assigned to two or more interventions. 68% of these primary RCT abstracts were structured. 63% contained pharmaceutical interventions. 84% reported the total number of study subjects. In a subset of 21 abstracts examined, 71% reported numerical outcome values.</p> <p>Conclusion</p> <p>The manual identifiability of decision tree elements in the abstract suggests that decision trees could be a suitable construct to guide machine summarisation of RCTs. The presence of decision tree elements could also act as an indicator for RCT report quality in terms of completeness and uniformity.</p

    Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain

    Get PDF
    BACKGROUND: The complement cascade not only provides protection from infection but can also mediate destructive inflammation. Complement is also involved in elimination of neuronal synapses which is essential for proper development, but can be detrimental during aging and disease. C1q, required for several of these complement-mediated activities, is present in the neuropil, microglia, and a subset of interneurons in the brain. METHODS: To identify the source(s) of C1q in the brain, the C1qa gene was selectively inactivated in the microglia or Thy-1(+) neurons in both wild type mice and a mouse model of Alzheimer’s disease (AD), and C1q synthesis assessed by immunohistochemistry, QPCR, and western blot analysis. RESULTS: While C1q expression in the brain was unaffected after inactivation of C1qa in Thy-1(+) neurons, the brains of C1qa (FL/FL) :Cx3cr1 (CreERT2) mice in which C1qa was ablated in microglia were devoid of C1q with the exception of limited C1q in subsets of interneurons. Surprisingly, this loss of C1q occurred even in the absence of tamoxifen by 1 month of age, demonstrating that Cre activity is tamoxifen-independent in microglia in Cx3cr1 (CreERT2/WganJ) mice. C1q expression in C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice continued to decline and remained almost completely absent through aging and in AD model mice. No difference in C1q was detected in the liver or kidney from C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice relative to controls, and C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice had minimal, if any, reduction in plasma C1q. CONCLUSIONS: Thus, microglia, but not neurons or peripheral sources, are the dominant source of C1q in the brain. While demonstrating that the Cx3cr1 (CreERT2/WganJ) deleter cannot be used for adult-induced deletion of genes in microglia, the model described here enables further investigation of physiological roles of C1q in the brain and identification of therapeutic targets for the selective control of complement-mediated activities contributing to neurodegenerative disorders. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-017-0814-9) contains supplementary material, which is available to authorized users

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    Full text link
    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in trans in the presence of distant chromosome breaks
    corecore