23 research outputs found

    Continuous venovenous hemodiafiltration with a low citrate dose regional anticoagulation protocol and a phosphate-containing solution: effects on acid–base status and phosphate supplementation needs

    Get PDF
    BACKGROUND: Recent guidelines suggest the adoption of regional citrate anticoagulation (RCA) as first choice CRRT anticoagulation modality in patients without contraindications for citrate. Regardless of the anticoagulation protocol, hypophosphatemia represents a potential drawback of CRRT which could be prevented by the adoption of phosphate-containing CRRT solutions. The aim was to evaluate the effects on acid--base status and phosphate supplementation needs of a new RCA protocol for Continuous Venovenous Hemodiafiltration (CVVHDF) combining the use of citrate with a phosphate-containing CRRT solution. METHODS: To refine our routine RCA-CVVH protocol (12 mmol/l citrate, HCO3- 32 mmol/l replacement fluid) (protocol A) and to prevent CRRT-related hypophosphatemia, we introduced a new RCA-CVVHDF protocol (protocol B) combining an 18 mmol/l citrate solution with a phosphate-containing dialysate/replacement fluid (HCO3- 30 mmol/l, Phosphate 1.2). A low citrate dose (2.5--3 mmol/l) and a higher than usual target circuit-Ca2+ (<=0.5 mmol/l) have been adopted. RESULTS: Two historical groups of heart surgery patients (n = 40) underwent RCA-CRRT with protocol A (n = 20, 102 circuits, total running time 5283 hours) or protocol B (n = 20, 138 circuits, total running time 7308 hours). Despite higher circuit-Ca2+ in protocol B (0.37 vs 0.42 mmol/l, p < 0.001), circuit life was comparable (51.8 +/- 36.5 vs 53 +/- 32.6 hours). Protocol A required additional bicarbonate supplementation (6 +/- 6.4 mmol/h) in 90% of patients while protocol B ensured appropriate acid--base balance without additional interventions: pH 7.43 (7.40--7.46), Bicarbonate 25.3 (23.8--26.6) mmol/l, BE 0.9 (-0.8 to +2.4); median (IQR). No episodes of clinically relevant metabolic alkalosis, requiring modifications of RCA-CRRT settings, were observed. Phosphate supplementation was needed in all group A patients (3.4 +/- 2.4 g/day) and in only 30% of group B patients (0.5 +/- 1.5 g/day). Hypophosphatemia developed in 75% and 30% of group A and group B patients, respectively. Serum phosphate was significantly higher in protocol B patients (P < 0.001) and, differently to protocol A, appeared to be steadily maintained in near normal range (0.97--1.45 mmol/l, IQR)

    Incidence and aetiology of renal phosphate loss in patients with hypophosphatemia in the intensive care unit.

    No full text
    Item does not contain fulltextBACKGROUND: Hypophosphatemia is a common finding in patients in the intensive care unit (ICU). Its cause is often poorly understood. PURPOSE: The aim of this study was to understand the incidence of renal phosphate loss in ICU-related hypophosphatemia, and to examine the role of phosphaturic hormones in its etiology. METHODS: Plasma phosphate levels were measured on day 1, 3, 5 and 7 in 290 consecutive patients admitted to the ICU. Renal phosphate handling and phosphaturic hormones were studied in a subset of patients with phosphate levels <0.6 mmol/L. Renal phosphate loss was defined as a TmP/gfr < 0.6 mmol/L. MAIN RESULTS: Hypophosphatemia developed in 24% of all patients. This mainly occurred within the first 3 days of stay and in patients with serum creatinine levels <150 mumol/L. Renal phosphate loss was present in 80% of patients who developed hypophosphatemia, and was not related to serum levels of parathyroid hormone (PTH), PTH-related protein (PTH-rp), fibroblast growth factor 23 (FGF-23), or calcitonin. CONCLUSION: Hypophosphatemia in the ICU is commonly associated with renal phosphate loss. It mainly occurs within the first 3 days of admission, in particular in patients with preserved renal function. Renal phosphate loss is not explained by elevated PTH, PTH-rp, FGF-23 or calcitonin levels.1 oktober 20137 p
    corecore