15 research outputs found
Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia
To determine if NMDA receptor alterations are present in the cerebellum in schizophrenia, we measured NMDA receptor binding and gene expression of the NMDA receptor subunits in a post-mortem study of elderly patients with schizophrenia and non-affected subjects. Furthermore, we assessed influence of genetic variation in the candidate gene neuregulin-1 (NRG1) on the expression of the NMDA receptor in an exploratory study. Post-mortem samples from the cerebellar cortex of ten schizophrenic patients were compared with nine normal subjects. We investigated NMDA receptor binding by receptor autoradiography and gene expression of the NMDA receptor subunits NR1, NR2A, NR2B, NR2C and NR2D by in situ hybridization. For the genetic study, we genotyped the NRG1 polymorphism rs35753505 (SNP8NRG221533). Additionally, we treated rats with the antipsychotics haloperidol or clozapine and assessed cerebellar NMDA receptor binding and gene expression of subunits to examine the effects of antipsychotic treatment. Gene expression of the NR2D subunit was increased in the right cerebellum of schizophrenic patients compared to controls. Individuals carrying at least one C allele of rs35753505 (SNP8NRG221533) showed decreased expression of the NR2C subunit in the right cerebellum, compared to individuals homozygous for the T allele. Correlation with medication parameters and the animal model revealed no treatment effects. In conclusion, increased NR2D expression results in a hyperexcitable NMDA receptor suggesting an adaptive effect due to receptor hypofunction. The decreased NR2C expression in NRG1 risk variant may cause a deficit in NMDA receptor function. This supports the hypothesis of an abnormal glutamatergic neurotransmission in the right cerebellum in the pathophysiology of schizophrenia
Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs
Numerous human imaging studies have revealed an absolute or relative metabolic hypofunction within the prefrontal cortex, thalamus and temporal lobes of schizophrenic patients. The former deficit correlates with cognitive deficits and negative symptoms, whereas the latter correlates with positive symptomologies. There is also general consensus that schizophrenia is associated with decreased parvalbumin expression in the prefrontal cortex. Since the drug phencyclidine can induce a psychosis resembling schizophrenia in humans, we have examined whether repeated phencyclidine (PCP) treatment to rats could produce similar metabolic and neurochemical deficits to those occurring in schizophrenia and whether these deficits could be modulated by antipsychotic drugs. We demonstrate here that chronic intermittent exposure to PCP (2.58 mg kg-1 i.p.) elicits a metabolic hypofunction, as demonstrated by reductions in the rates of glucose utilization, within the prefrontal cortex, reticular nucleus of thalamus and auditory system, key structures displaying similar changes in schizophrenia. Moreover, chronic PCP treatment according to this regime also decreases parvalbumin mRNA expression in the rat prefrontal cortex and reticular nucleus of the thalamus. Chronic coadministration of haloperidol (1 mg kg-1 day-1) or clozapine (20 mg kg-1 day-1) with PCP did not modulate PCP-induced reductions in metabolic activity in the rat prefrontal cortex, but reversed deficits in the structures of the auditory system. Clozapine, but not haloperidol, reversed PCP-induced decreases in parvalbumin expression in prefrontal cortex GABAergic interneurons, whereas both drugs reversed the deficits in the reticular nucleus of the thalamus. These data provide important new information, which strengthen the validity of chronic PCP as a useful animal model of schizophrenia, when administered according to this protocol. Furthermore, we propose that reversal of PCP-induced reductions in parvalbumin expression in the prefrontal cortex may be a potential marker of atypical antipsychotic activity in relation to amelioration of cognitive deficits and negative symptoms of schizophrenia
The relevance of 'mixed anxiety and depression' as a diagnostic category in clinical practice
According to ICD-10 criteria, mixed anxiety and depressive disorder (MADD) is characterized by co-occurring, subsyndromal symptoms of anxiety and depression, severe enough to justify a psychiatric diagnosis, but neither of which are clearly predominant. MADD appears to be very common, particularly in primary care, although prevalence estimates vary, often depending on the diagnostic criteria applied. It has been associated with similarly pronounced distress, impairment of daily living skills, and reduced health-related quality of life as fully syndromal depression and anxiety. Although about half of the patients affected remit within a year, non-remitting patients are at a high risk of transition to a fully syndromal psychiatric disorder. The validity and clinical usefulness of MADD as a diagnostic category are under debate. It has not been included in the recently released DSM-5 since the proposed diagnostic criteria turned out to be not sufficiently reliable. Moreover, reviewers have disputed the justification of MADD based on divergent results regarding its prevalence and course, diagnostic stability over time, and nosological inconsistencies between subthreshold and threshold presentations of anxiety and depressive disorders. We review the evidence in favor and against MADD and argue that it should be included into classification systems as a diagnostic category because it may enable patients to gain access to appropriate treatment early. This may help to reduce patients' distress, prevent exacerbation to a more serious psychiatric disorder, and ultimately reduce the societal costs of this very common condition