25 research outputs found

    Prototiles and Tilings from Voronoi and Delone cells of the Root Lattice A_n

    Full text link
    We exploit the fact that two-dimensional facets of the Voronoi and Delone cells of the root lattice A_n in n-dimensional space are the identical rhombuses and equilateral triangles respectively.The prototiles obtained from orthogonal projections of the Voronoi and Delaunay (Delone) cells of the root lattice of the Coxeter-Weyl group W(a)_n are classified. Orthogonal projections lead to various rhombuses and several triangles respectively some of which have been extensively discussed in the literature in different contexts. For example, rhombuses of the Voronoi cell of the root lattice A_4 projects onto only two prototiles: thick and thin rhombuses of the Penrose tilings. Similarly the Delone cells tiling the same root lattice projects onto two isosceles Robinson triangles which also lead to Penrose tilings with kites and darts. We point out that the Coxeter element of order h=n+1 and the dihedral subgroup of order 2n plays a crucial role for h-fold symmetric aperiodic tilings of the Coxeter plane. After setting the general scheme we give examples leading to tilings with 4-fold, 5-fold, 6-fold,7-fold, 8-fold and 12-fold symmetries with rhombic and triangular tilings of the plane which are useful in modelling the quasicrystallography with 5-fold, 8-fold and 12-fold symmetries. The face centered cubic (f.c.c.) lattice described by the root lattice A_(3)whose Wigner-Seitz cell is the rhombic dodecahedron projects, as expected, onto a square lattice with an h=4 fold symmetry.Comment: 22 pages, 17 figure

    Chiral Polyhedra Derived From Coxeter Diagrams and Quaternions

    Get PDF
    There are two chiral Archimedean polyhedra, the snub cube and snub dodecahedron together with their duals the Catalan solids, pentagonal icositetrahedron and pentagonal hexacontahedron. In this paper we construct the chiral polyhedra and their dual solids in a systematic way. We use the proper rotational subgroups of the Coxeter groups W(A1⊕A1⊕A1)W(A_1 \oplus A_1 \oplus A_1), W(A3)W(A_3), W(B3)W(B_3) and W(H3)W(H_3) to derive the orbits representing the solids of interest. They lead to the polyhedra tetrahedron, icosahedron, snub cube, and snub dodecahedron respectively. We prove that the tetrahedron and icosahedron can be transformed to their mirror images by the proper rotational octahedral group W(B3)C2\frac{W(B_3)}{C_2} so they are not classified in the class of chiral polyhedra. It is noted that the snub cube and the snub dodecahedron can be derived from the vectors, which are non-linear combinations of the simple roots, by the actions of the proper rotation groups W(B3)C2\frac{W(B_3)}{C_2} and W(H3)C2\frac{W(H_3)}{C_2} respectively. Their duals are constructed as the unions of three orbits of the groups of concern. We also construct the polyhedra, quasiregular in general, by combining chiral polyhedra with their mirror images. As a by product we obtain the pyritohedral group as the subgroup the Coxeter group W(H3)W(H_3) and discuss the constructions of pyritohedrons. We employ a method which describes the Coxeter groups and their orbits in terms of quaternions.Comment: 22 pages, 19 figure
    corecore