404 research outputs found

    PRODUCTIVITY MANAGEMENT OF THE CACAO AGRO-FOOD SYSTEM IN TABASCO (MEXICO): A FITNESS APPROACH

    Get PDF
    The farming industry and the agro-food system as a whole are now required to adapt to a challenging and more competitive environment. How the food industry can fit itself into such environment is the main question that is addressed in this study. The fitness approach, an exploratory framework, is applied in order to study the Cacao Agro-food System (CAPS) in Tabasco. Mexico. The final sample consisted of 356 farmers, 37 curing plants, 6 wholesaling firms, and 7 chocolate firms. An anatomical model using correspondence analysis was adopted to understand the main features of every industry in the CAPS. The Pitness Appraisal Instrument (FAI) was constructed and applied to determine the relationships between factors and aspects of organisational configuration with 5 key performance indicators of the CAPS farming industry. The anatomy of CAPS revealed that it is based on raw and bulk products, has a potential to diversify vertically and horizontally, and has a dual structure private and union related -which is not appropriate to deal with issues such as free market pressures or lethal fungal diseases. Results of the PAI analysis revealed that both the factors and the aspects of organisational configuration are significantly related to performance indicators. Indeed, 14 of the 20 productivity management elements are significantly related to performance indicators. Moreover, the results show that a set of fittest solutions, rather than a unique solution, exists among farmers. Visualisation of the productivity management elements reveals that participation of organic cacao, education levels, and price setting exert the strongest influence on productivity indicators. The key implication of this study is that both efficiency and effectiveness are the two valid strategies that enable the farming industry to cope with the challenging and competitive environment. The Policy makers should be aware of a set of solutions (fitness landscape) instead of just focusing on individual (often narrow) solution

    The ecosystem services concept: a new Esperanto to facilitate participatory planning processes?

    No full text
    ContextSeveral case studies investigated the role of ecosystem services in participatory planning processes. However, no systematic study exists that cuts across a large number of empirical cases to identify the implications of using ecosystem services in participatory planning.ObjectivesThis study explores the potential of the ecosystem services concept to act as a boundary concept (new Esperanto) to facilitate the integration of actors' perceptions and objectives into planning goals.MethodsWe analyzed eleven case studies to explore how the ecosystem services concept has been operationalized to support participatory planning processes, and to identify lessons from successful applications. We characterized the case studies according to contextual and methodological criteria. Each case study was assessed through a codified score card method in order to detect success or failure criteria in using the ecosystem services concept in participatory planning. We compared the case study criteria with the results of the balanced score card method.ResultsWe identified several positive effects of applying the ecosystem services concept in participatory planning, including the facilitation of knowledge sharing and consideration of local experiences, the support towards a shared vision, and the increased awareness among local actors concerning their role as ecosystem services suppliers or beneficiaries. Among the drawbacks, we identified the risk of overemphasizing specific ecosystem goods or services during the process.ConclusionsWe conclude by providing some recommendations to enhance future practice related to issues such as communication, use of local knowledge and integration of ecosystem services in existing legal instruments

    Measurement of inclusive and differential cross sections for W+^{+}W^{-} production in proton-proton collisions at s= \sqrt{s} = 13.6 TeV

    No full text
    Measurements at s= \sqrt{s}= 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb1 ^{-1} . Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W+^{+}W^{-} production cross section of 125.7 ± \pm 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions.Measurements at s\sqrt{s} = 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb1^{-1}. Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W+^+W^- production cross section of 125.7 ±\pm 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions

    Search for a resonance decaying to a W boson and a photon in proton-proton collisions at s\sqrt{s} = 13 TeV using leptonic W boson decays

    No full text
    International audienceA search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb1^{-1}. Particle X has electric charge ±\pm1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%)

    Search for a resonance decaying to a W boson and a photon in proton-proton collisions at s= \sqrt{s} = 13 TeV using leptonic W boson decays

    No full text
    A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb1 ^{-1} . Particle X has electric charge ± \pm 1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%).A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb1^{-1}. Particle X has electric charge ±\pm1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%)

    Measurement of inclusive and differential cross sections for W+^+W^- production in proton-proton collisions at s\sqrt{s} = 13.6 TeV

    No full text
    International audienceMeasurements at s\sqrt{s} = 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb1^{-1}. Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W+^+W^- production cross section of 125.7 ±\pm 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions

    Search for long-lived heavy neutral leptons in proton-proton collision events with a lepton-jet pair associated with a secondary vertex at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for long-lived heavy neutral leptons (HNLs) using proton-proton collision data corresponding to an integrated luminosity of 138 fb1^{-1} collected at s\sqrt{s} = 13 TeV with the CMS detector at the CERN LHC is presented. Events are selected with a charged lepton originating from the primary vertex associated with the proton-proton interaction, as well as a second charged lepton and a hadronic jet associated with a secondary vertex that corresponds to the semileptonic decay of a long-lived HNL. No excess of events above the standard model expectation is observed. Exclusion limits at 95% confidence level are evaluated for HNLs that mix with electron and/or muon neutrinos. Limits are presented in the mass range of 1-16.5 GeV, with excluded square mixing parameter values reaching as low as 2 ×\times 107^{-7}. For masses above 11 GeV, the presented limits exceed all previous results in the semileptonic decay channel, and for some of the considered scenarios are the strongest to date

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Measurement of the Bs0^0_\mathrm{s}\to J/ψ\psiKS0^0_\mathrm{S} effective lifetime from proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe effective lifetime of the Bs0^0_\mathrm{s} meson in the decay Bs0^0_\mathrm{s}\to J/ψ\psiKS0^0_\mathrm{S} is measured using data collected during 2016-2018 with the CMS detector in s\sqrt{s} = 13 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 140 fb1^{-1}. The effective lifetime is determined by performing a two-dimensional unbinned maximum likelihood fit to the Bs0^0_\mathrm{s} meson invariant mass and proper decay time distributions. The resulting value of 1.59 ±\pm 0.07 (stat) ±\pm 0.03 (syst) ps is the most precise measurement to date and is in good agreement with the expected value

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger
    corecore