4,209 research outputs found

    Gamma Ray Bursts as cosmological tools

    Full text link
    The use of Gamma Ray Bursts as ``standard candles'' has been made possible by the recent discovery of a very tight correlation between their rest frame intrinsic properties. This correlation relates the GRB prompt emission peak spectral energy E_peak to the energy E_gamma corrected for the collimation angle theta_jet of these sources. The possibility to use GRBs to constrain the cosmological parameters and to study the nature of Dark Energy are very promising.Comment: 6 pages, 3 figures, Proceedings of the workshop 'Astrophysical sources of high energy particles and radiation', Torun - Poland 20-24 June 2005, Ed. T. Bulik, B. Rudak, G. Madejsk

    Spectral properties of long and short Gamma-Ray Bursts: comparison between BATSE and Fermi bursts

    Full text link
    We compare the spectral properties of 227 Gamma Ray Bursts (GRBs) detected by the Fermi Gamma Ray Burst Monitor (GBM) up to February 2010 with those of bursts detected by the CGRO/BATSE instrument. Out of 227 Fermi GRBs, 166 have a measured peak energy E_peak_obs of their \nuF(\nu) spectrum: of these 146 and 20 belong the long and short class, respectively. Fermi long bursts follow the correlations defined by BATSE bursts between their E_peak_obs vs fluence and peak flux: as already shown for the latter ones, these correlations and their slopes do not originate from instrumental selection effects. Fermi/GBM bursts extend such correlations toward lower fluence/peak energy values with respect to BATSE ones whereas no GBM long burst with E_peak_obs exceeding a few MeV is found, despite the possibility of detecting them. Again as for BATSE, ∼\sim 5% of long and almost all short GRBs detected by Fermi/GBM are outliers of the E_peak-isotropic equivalent energy ("Amati") correlation while no outlier (neither long nor short) of the E_peak-isotropic equivalent luminosity ("Yonetoku") correlation is found. Fermi long bursts have similar typical values of E_peak_obs but a harder low energy spectral index with respect to all BATSE events, exacerbating the inconsistency with the limiting slopes of the simplest synchrotron emission models. Although the short GRBs detected by Fermi are still only a few, we confirm that their E_peak_obs is greater and the low energy spectrum is harder than those of long ones. We discuss the robustness of these results with respect to observational biases induced by the differences between the GBM and BATSE instruments.Comment: 10 pages, 8 figures, submitted to A&

    Evidence of two spectral breaks in the prompt emission of gamma ray bursts

    Get PDF
    The long-lasting tension between the observed spectra of gamma ray bursts (GRBs) and the predicted synchrotron emission spectrum might be solved if electrons do not completely cool. Evidence for incomplete cooling was recently found in Swift GRBs with prompt observations down to 0.1 keV and in one bright Fermi burst, GRB 160625B. Here we systematically search for evidence of incomplete cooling in the spectra of the ten brightest short and long GRBs observed by Fermi. We find that in 8/10 long GRBs there is compelling evidence of a low energy break (below the peak energy) and good agreement with the photon indices of the synchrotron spectrum (respectively -2/3 and -3/2 below the break and between the break and the peak energy). Interestingly, none of the ten short GRBs analysed shows a break but the low energy spectral slope is consistent with -2/3. In a standard scenario, these results imply a very low magnetic field in the emission region (B' ~ 10 G in the comoving frame), at odd with expectations.Comment: 14 pages, 15 figures, in press, accepted for publication in A&

    Tensor interactions and Ï„\tau decays

    Full text link
    We study the effects of charged tensor weak currents on the strangeness-changing decays of the τ\tau lepton. First, we use the available information on the Ke3+K^+_{e3} form factors to obtain BR(τ−→K−π0ντ)∼O(10−4)(\tau^- \rightarrow K^-\pi^0 \nu_{\tau})\sim {\cal O}(10^{-4}) when the KπK\pi system is produced in an antisymmetric tensor configuration. Then, we propose a mechanism for the direct production of the K2∗(1430)K_2^*(1430) in τ\tau decays. Using the current upper limit on this decay we set a bound on the symmetric tensor interactions.Comment: 13 pages, Late

    Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    Get PDF
    The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.Comment: Invited talk at SUGAR201

    The Epeak-Eiso plane of long Gamma Ray Bursts and selection effects

    Full text link
    We study the distribution of long Gamma Ray Bursts in the Ep-Eiso and in the Ep,obs-Fluence planes through an updated sample of 76 bursts, with measured redshift and spectral parameters, detected up to September 2007. We confirm the existence of a strong rest frame correlation Ep ~ Eiso^0.54+-0.01. Contrary to previous studies, no sign of evolution with redshift of the Ep-Eiso correlation (either its slope and normalisation) is found. The 76 bursts define a strong Ep,obs-Fluence correlation in the observer frame (Ep,obs ~ F^0.32+-0.05) with redshifts evenly distributed along this correlation. We study possible instrumental selection effects in the observer frame Ep,obs-Fluence plane. In particular, we concentrate on the minimum peak flux necessary to trigger a given GRB detector (trigger threshold) and the minimum fluence a burst must have to determine the value of Ep,obs (spectral analysis threshold). We find that the latter dominates in the Ep,obs-Fluence plane over the former. Our analysis shows, however, that these instrumental selection effects do not dominate for bursts detected before the launch of the Swift satellite, while the spectral analysis threshold is the dominant truncation effect of the Swift GRB sample (27 out of 76 events). This suggests that the Ep,obs-Fluence correlation defined by the pre--Swift sample could be affected by other, still not understood, selection effects. Besides we caution about the conclusions on the existence of the Ep,obs-Fluence correlation based on our Swift sample alone.Comment: To appear in MNRA

    Cosmological constraints with GRBs: homogeneous medium vs wind density profile

    Full text link
    We present the constraints on the cosmological parameters obtained with the EpeakE_{\rm peak}--EγE_{\gamma} correlation found with the most recent sample of 19 GRBs with spectroscopically measured redshift and well determined prompt emission spectral and afterglow parameters. We compare our results obtained in the two possible uniform jet scenarios, i.e. assuming a homogeneous density profile (HM) or a wind density profile (WM) for the circumburst medium. Better constraints on ΩM\Omega_{M} and ΩΛ\Omega_{\Lambda} are obtained with the (tighter) EpeakE_{\rm peak}--EγE_{\gamma} correlation derived in the wind density scenario. We explore the improvements to the constraints of the cosmological parameters that could be reached with a large sample, ∼\sim 150 GRBs, in the future. We study the possibility to calibrate the slope of these correlations. Our optimization analysis suggests that ∼12\sim 12 GRBs with redshift z∈(0.9,1.1)z\in(0.9,1.1) can be used to calibrate the EpeakE_{\rm peak}--EγE_{\gamma} with a precision better than 1%. The same precision is expected for the same number of bursts with z∈(0.45,0.75)z\in(0.45,0.75). This result suggests that we do not necessarily need a large sample of low z GRBs for calibrating the slope of these correlations.Comment: 7 pages, 7 figures, submitted to A&

    Afterglows from precursors in Gamma Ray Bursts. Application to the optical afterglow of GRB 091024

    Full text link
    About 15% of Gamma Ray Bursts have precursors, i.e. emission episodes preceding the main event, whose spectral and temporal properties are similar to the main emission. We propose that precursors have their own fireball, producing afterglow emission due to the dissipation of the kinetic energy via external shock. In the time lapse between the precursor and the main event, we assume that the central engine is not completely turned off, but it continues to eject relativistic material at a smaller rate, whose emission is below the background level. The precursor fireball generates a first afterglow by the interaction with the external circumburst medium. Matter injected by the central engine during the "quasi-quiescent" phase replenishes the external medium with material in relativistic motion. The fireball corresponding to the main prompt emission episode crashes with this moving material, producing a second afterglow, and finally catches up and merges with the first precursor fireball. We apply this new model to GRB 091024, an event with a precursor in the prompt light curve and two well defined bumps in the optical afterglow, obtaining an excellent agreement with the existing data.Comment: 11 pages, 6 figures, 3 tables. Accepted for publication in MNRAS, Main Journa

    Spectral analysis of Swift long GRBs with known redshift

    Full text link
    We study the spectral and energetics properties of 47 long-duration gamma-ray bursts (GRBs) with known redshift, all of them detected by the Swift satellite. Due to the narrow energy range (15-150 keV) of the Swift-BAT detector, the spectral fitting is reliable only for fitting models with 2 or 3 parameters. As high uncertainty and correlation among the errors is expected, a careful analysis of the errors is necessary. We fit both the power law (PL, 2 parameters) and cut--off power law (CPL, 3 parameters) models to the time-integrated spectra of the 47 bursts, and present the corresponding parameters, their uncertainties, and the correlations among the uncertainties. The CPL model is reliable only for 29 bursts for which we estimate the nuf_nu peak energy Epk. For these GRBs, we calculate the energy fluence and the rest- frame isotropic-equivalent radiated energy, Eiso, as well as the propagated uncertainties and correlations among them. We explore the distribution of our homogeneous sample of GRBs on the rest-frame diagram E'pk vs Eiso. We confirm a significant correlation between these two quantities (the "Amati" relation) and we verify that, within the uncertainty limits, no outliers are present. We also fit the spectra to a Band model with the high energy power law index frozen to -2.3, obtaining a rather good agreement with the "Amati" relation of non-Swift GRBs.Comment: 16 pages. To appear in MNRAS. Minor changes were introduced in this last versio

    Long Gamma-Ray Bursts as standard candles

    Get PDF
    As soon as it was realized that long GRBs lie at cosmological distances, attempts have been made to use them as cosmological probes. Besides their use as lighthouses, a task that presents mainly the technological challenge of a rapid deep high resolution follow-up, researchers attempted to find the Holy Grail: a way to create a standard candle from GRB observables. We discuss here the attempts and the discovery of the Ghirlanda correlation, to date the best method to standardize the GRB candle. Together with discussing the promises of this method, we will underline the open issues, the required calibrations and how to understand them and keep them under control. Even though GRB cosmology is a field in its infancy, ongoing work and studies will clarify soon if and how GRBs will be able to keep up to the promises.Comment: To appear in the proceedings of the 16th Annual October Astrophysics Conference in Maryland "Gamma Ray Bursts in the Swift Era", eds. S. Holt, N. Gehrels & J. Nouse
    • …
    corecore