6 research outputs found

    Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population

    Get PDF
    Potato is the third most important staple food crop in terms of consumption, yet it is relatively susceptible to yield loss because of drought. As a first step towards improving drought tolerance in this crop, we set out to identify the genetic basis for drought tolerance in a diploid potato mapping population. Experiments were carried out under greenhouse conditions in two successive years by recording four physiological, seven growth and three yield parameters under stress and recovery treatments. Genotypes showed significant variation for drought and recovery responses. The traits measured had low to moderately high heritabilities (ranging from 22 to 74 %). A total of 47 quantitative trait loci (QTL) were identified, of which 28 were drought-specific, 17 under recovery treatment and two under well-watered conditions. The majority of these growth and yield QTL co-localized with a QTL for maturity on chromosome 5. Four QTL for d13C, three for chlorophyll content and one for chlorophyll fluorescence (Fv/Fm) were found to co-localize with yield and other growth trait QTL identified on other chromosomes. Several multi-year and multi-treatment QTL were detected and QTL 9 environment interaction was found for d13C. To our knowledge, this is the first comprehensive QTL study on water deficit and recovery potential in potato

    A modified multisite gateway cloning strategy for consolidation of genes in plants

    No full text
    The genome information is offering opportunities to manipulate genes, polygenic characters and multiple traits in plants. Although a number of approaches have been developed to manipulate traits in plants, technical hurdles make the process difficult. Gene cloning vectors that facilitate the fusion, overexpression or down regulation of genes in plant cells are being used with various degree of success. In this study, we modified gateway MultiSite cloning vectors and developed a hybrid cloning strategy which combines advantages of both traditional cloning and gateway recombination cloning. We developed Gateway entry (pGATE) vectors containing attL sites flanking multiple cloning sites and plant expression vector (pKM12GW) with specific recombination sites carrying different plant and bacterial selection markers. We constructed a plant expression vector carrying a reporter gene (GUS), two Bt cry genes in a predetermined pattern by a single round of LR recombination reaction after restriction endonuclease-mediated cloning of target genes into pGATE vectors. All the three transgenes were co-expressed in Arabidopsis as evidenced by gene expression, histochemical assay and insect bioassay. The pGATE vectors can be used as simple cloning vectors as there are rare restriction endonuclease sites inserted in the vector. The modified multisite vector system developed is ideal for stacking genes and pathway engineering in plants. © 2012 Springer Science+Business Media, LLC
    corecore