6,181 research outputs found

    Recursive Newton-Euler formulation of manipulator dynamics

    Get PDF
    A recursive Newton-Euler procedure is presented for the formulation and solution of manipulator dynamical equations. The procedure includes rotational and translational joints and a topological tree. This model was verified analytically using a planar two-link manipulator. Also, the model was tested numerically against the Walker-Orin model using the Shuttle Remote Manipulator System data. The hinge accelerations obtained from both models were identical. The computational requirements of the model vary linearly with the number of joints. The computational efficiency of this method exceeds that of Walker-Orin methods. This procedure may be viewed as a considerable generalization of Armstrong's method. A six-by-six formulation is adopted which enhances both the computational efficiency and simplicity of the model

    Polar Codes for Arbitrary Classical-Quantum Channels and Arbitrary cq-MACs

    Full text link
    We prove polarization theorems for arbitrary classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation and an Ar{\i}kan-style transformation is applied using this operation. It is shown that as the number of polarization steps becomes large, the synthetic cq-channels polarize to deterministic homomorphism channels which project their input to a quotient group of the input alphabet. This result is used to construct polar codes for arbitrary cq-channels and arbitrary classical-quantum multiple access channels (cq-MAC). The encoder can be implemented in O(Nlog⁥N)O(N\log N) operations, where NN is the blocklength of the code. A quantum successive cancellation decoder for the constructed codes is proposed. It is shown that the probability of error of this decoder decays faster than 2−NÎČ2^{-N^{\beta}} for any ÎČ<12\beta<\frac{1}{2}.Comment: 30 pages. Submitted to IEEE Trans. Inform. Theory and in part to ISIT201

    Lung Cancer Detection Using Artificial Neural Network

    Get PDF
    In this paper, we developed an Artificial Neural Network (ANN) for detect the absence or presence of lung cancer in human body. Symptoms were used to diagnose the lung cancer, these symptoms such as Yellow fingers, Anxiety, Chronic Disease, Fatigue, Allergy, Wheezing, Coughing, Shortness of Breath, Swallowing Difficulty and Chest pain. They were used and other information about the person as input variables for our ANN. Our ANN established, trained, and validated using data set, which its title is “survey lung cancer”. Model evaluation showed that the ANN model is able to detect the absence or presence of lung cancer with 96.67 % accuracy

    Text-Independent Speaker Verification Using 3D Convolutional Neural Networks

    Full text link
    In this paper, a novel method using 3D Convolutional Neural Network (3D-CNN) architecture has been proposed for speaker verification in the text-independent setting. One of the main challenges is the creation of the speaker models. Most of the previously-reported approaches create speaker models based on averaging the extracted features from utterances of the speaker, which is known as the d-vector system. In our paper, we propose an adaptive feature learning by utilizing the 3D-CNNs for direct speaker model creation in which, for both development and enrollment phases, an identical number of spoken utterances per speaker is fed to the network for representing the speakers' utterances and creation of the speaker model. This leads to simultaneously capturing the speaker-related information and building a more robust system to cope with within-speaker variation. We demonstrate that the proposed method significantly outperforms the traditional d-vector verification system. Moreover, the proposed system can also be an alternative to the traditional d-vector system which is a one-shot speaker modeling system by utilizing 3D-CNNs.Comment: Accepted to be published in IEEE International Conference on Multimedia and Expo (ICME) 201

    Web Application for Generating a Standard Coordinated Documentation for CS Students’ Graduation Project in Gaza Universities

    Get PDF
    The computer science (CS) graduated students suffered from documenting their projects and specially from coordinating it. In addition, students’ supervisors faced difficulties with guiding their students to an efficient process of documenting. In this paper, we will offer a suggestion as a solution to the mentioned problems; that is an application to make the process of documenting computer science (CS) student graduation project easy and time-cost efficient. This solution will decrease the possibility of human mistakes and reduce the effort of documenting process
    • 

    corecore