641 research outputs found

    Star network synchronization led by strong coupling-induced frequency squeezing

    Full text link
    We consider a star network consisting of N oscillators coupled to a central one which in turn is coupled to an infinite set of oscillators (reservoir), which makes it leaking. Two of the N + 1 normal modes are dissipating, while the remaining N - 1 lie in a frequency range which is more and more squeezed as the coupling strengths increase, which realizes synchronization of the single parts of the system

    Dephasing due to quasiparticle tunneling in fluxonium qubits: a phenomenological approach

    Get PDF
    The fluxonium qubit has arisen as one of the most promising candidate devices for implementing quantum information in superconducting devices, since it is both insensitive to charge noise (like flux qubits) and insensitive to flux noise (like charge qubits). Here, we investigate the stability of the quantum information to quasiparticle tunneling through a Josephson junction. Microscopically, this dephasing is due to the dependence of the quasiparticle transmission probability on the qubit state. We argue that on a phenomenological level the dephasing mechanism can be understood as originating from heat currents, which are flowing in the device due to possible effective temperature gradients, and their sensitivity to the qubit state. The emerging dephasing time is found to be insensitive to the number of junctions with which the superinductance of the fluxonium qubit is realised. Furthermore, we find that the dephasing time increases quadratically with the shunt-inductance of the circuit which highlights the stability of the device to this dephasing mechanism.Comment: published versio

    Interaction-free evolution in the presence of time-dependent Hamiltonians

    Get PDF
    The generalization of the concept of interaction-free evolutions (IFE) [A. Napoli, {\it et al.}, Phys. Rev. A {\bf 89}, 062104 (2014)] to the case of time-dependent Hamiltonians is discussed. It turns out that the time-dependent case allows for much more rich structures of interaction-free states and interaction-free subspaces. The general condition for the occurrence of IFE is found and exploited to analyze specific situations. Several examples are presented, each one associated to a class of Hamiltonians with specific features.Comment: 6 pahes, no figure

    Efficient generation of NN-photon generalized binomial states in a cavity

    Full text link
    Extending a previous result on the generation of two-photon generalized binomial field states, here we propose an efficient scheme to generate with high-fidelity, in a single-mode high-Q cavity, N-photon generalized binomial states with a maximum number of photons N>2. Besides their interest for classical-quantum border investigations, we discuss the applicative usage of these states in realizing universal quantum computation, describing in particular a scheme that performs a controlled-NOT gate by dispersive interaction with a control atom. We finally analyze the feasibility of the proposed schemes, showing that they appear to be within the current experimental capabilities.Comment: 8 pages, 2 figure

    Fluctuation theorems for non-Markovian quantum processes

    Full text link
    Exploiting previous results on Markovian dynamics and fluctuation theorems, we study the consequences of memory effects on single realizations of nonequilibrium processes within an open system approach. The entropy production along single trajectories for forward and backward processes is obtained with the help of a recently proposed classical-like non-Markovian stochastic unravelling, which is demonstrated to lead to a correction of the standard entropic fluctuation theorem. This correction is interpreted as resulting from the interplay between the information extracted from the system through measurements and the flow of information from the environment to the open system: Due to memory effects single realizations of a dynamical process are no longer independent, and their correlations fundamentally affect the behavior of entropy fluctuations.Comment: 7 pages, 1 figur

    BUILDING AN ENTANGLEMENT MEASURE ON PHYSICAL GROUND

    Get PDF
    We introduce on physical grounds a new measure of multipartite entanglement for pure states. The function we define is discriminant and monotone under LOCC; moreover, it can be expressed in terms of observables of the system.We introduce on physical grounds a new measure of multipartite entanglement for pure states. The function we define is discriminant and monotone under LOCC; moreover, it can be expressed in terms of observables of the system

    Effective hamiltonian approach to the non-Markovian dynamics in a spin-bath

    Get PDF
    We investigate the dynamics of a central spin that is coupled to a bath of spins through a non-uniform distribution of coupling constants. Simple analytical arguments based on master equation techniques as well as numerical simulations of the full von Neumann equation of the total system show that the short-time damping and decoherence behaviour of the central spin can be modelled accurately through an effective Hamiltonian involving a single effective coupling constant. The reduced short-time dynamics of the central spin is thus reproduced by an analytically solvable effective Hamiltonian model
    • …
    corecore