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The generalization of the concept of interaction-free evolutions (IFE) [Napoli et al., Phys. Rev. A 89, 062104
(2014)] to the case of time-dependent Hamiltonians is discussed. It turns out that the time-dependent case allows
for much richer structures of interaction-free states and interaction-free subspaces. The general condition for the
occurrence of IFE is found and exploited to analyze specific situations. Several examples are presented, each one
associated to a class of Hamiltonians with specific features.
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I. INTRODUCTION

An interaction-free evolution (IFE) of a quantum system
is an evolution which is not influenced by a certain part
of the Hamiltonian, which is addressed as the interaction
term [1]. In other words, the dynamics generated by the
“unperturbed” Hamiltonian H0 is essentially the same as
the evolution generated by the total Hamiltonian, which is the
sum of H0 and the interaction term HI: H = H0 + HI. This
notion, which has been introduced in Ref. [1], is somehow
related to the concept of decoherence-free subspaces (DFS)
[2–6]. In spite of such connection, it should be stressed that
the two concepts are still different in many aspects. Generally
speaking, the notion of IFE can be relevant to composite
systems with different dimensions (like a small system and
its environment) or with similar dimensions (for example, two
interacting qubits), but it can even concern different degrees
of freedom of the same particle (for example, atomic and
vibrational degrees of freedom of a trapped ion). One can even
talk about IFE states in connection with the action of a classical
field on a quantum system, for example, a spin under the action
of a magnetic field.

Subradiance [7–13], in its original formulation, is surely
a very famous phenomenon which can be thought of as an
IFE involving a matter system (several atoms) and the vacuum
electromagnetic field.

In this paper, we study the nontrivial extension of IFE states,
which applies to those cases wherein the system is governed
by a time-dependent Hamiltonian. The interest in this kind
of problem is related to several aspects. On the one hand,
generally speaking, the resolution of dynamical problems with
time-dependent Hamiltonians is a tough job due to the highly
nontrivial structure of the corresponding solution

U (t) = T exp

(
−i

∫ t

0
H (τ )dτ

)
, (1)

where T denotes the chronological product. In general Eq. (1)
is untractable and except for some lucky cases [14–16]
it requires special assumptions, such as, for example, the
adiabatic one [17], or suitable approximations, like in the
perturbative treatment [18,19]. Therefore, even the partial
resolution of a class of time-dependent problems in the
presence of time-dependent Hamiltonians is of interest itself.
Formula (1) simplifies if H (t) defines a commutative family,
i.e., [H (t),H (t ′)] = 0 for arbitrary t and t ′. In this case the

chronological product drops out and the entire evolution is
controlled by the integral

∫ t

0 H (τ )dτ .
On the other hand, there could be important applications in

the field of quantum control and in particular in the field of
suppression of decoherence effects. Indeed, our analysis could
pave the way to extensions of the concepts of subradiance and
decoherence-free subspaces in the presence of time-dependent
Hamiltonian of the system and even in the presence of time-
dependent interaction between the system and its environment.

The paper is organized as follows. In the next section we
introduce the problem and find out the general conditions that
guarantee the interaction-free evolution. In Secs. III–V we
provide several examples of IFE states belonging to different
classes. In particular, after the simplest examples in Sec. III,
we go on in Sec. IV by analyzing a case of IFE in the context
of an adiabatic evolution, while in Sec. V we present some
examples related to a more general class of IFE states. Finally,
in Sec. VI, we give some conclusive remarks.

II. INTERACTION-FREE CONDITIONS

Let us recall the definition of interaction-free evolution
(IFE): We say that a state |ψ0〉 undergoes an IFE if it evolves as
if the interaction term of the Hamiltonian (which can be time
dependent) were absent. To better understand this definition,
let us assume that our system is governed by a time-dependent
Hamiltonian which can be split into two parts, one part that
we call unperturbed and one part that we call the interaction
term:

i∂t |ψ(t)〉 = (H0(t) + HI(t))|ψ(t)〉 . (2)

The relevant evolution operator is denoted by U (t), while U0(t)
denotes the evolution operator associated to H0(t) only. This
means

i∂tU (t) = [H0(t) + HI(t)]U (t) , (3a)

i∂tU0(t) = H0(t)U0(t) . (3b)

We are looking for those states |ψ0〉 ∈ H (the Hilert
space of the system) for which the complete evolution is
“essentially” equal to the unperturbed one:

U (t)|ψ0〉 = eiA(t)U0(t)|ψ0〉 , (4)

where A(t) is a real function of time.
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By inserting the ansatz |ψ(t)〉 = eiA(t)U0(t)|ψ0〉 into the
Schrödinger equation (2) and exploiting Eqs. (3a) and (3b),
we get that the following condition must be satisfied:

[HI(t) − Ȧ(t)]U0(t)|ψ0〉 = 0 , (5)

which means that, at every instant, the unperturbed evolution
operator U0(t) maps the initial state |ψ0〉 into an instantaneous
eigenstate of the interaction term:

HI(t)U0(t)|ψ0〉 = a(t) U0(t)|ψ0〉 , (6)

with a(t) = Ȧ(t). This condition is clearly necessary and
sufficient, since the chain of implications that brings from
Eqs. (4) to (6) can be followed backward, from Eqs. (6) to (4).

It is worth mentioning that all the states satisfying Eq. (6)
with the same a(t) form a subspace, that we will address as an
IFE subspace. In fact, every state belonging to such a subspace
evolves as if the interaction were not present. On the contrary,
if one considers the superposition of two IFE states belonging
to different IFE subspaces, a phase difference between such
states will be accumulated (due to the different values of the
eigenvalue a(t)), and then the evolution will be effectively
different from the one obtained in the absence of interaction.

Let us observe that by applying U
†
0 (t) to the both sides of

Eq. (6) one gets

H̃I(t)|ψ0〉 = a(t)|ψ0〉 , (7)

where H̃I(t) = U
†
0 (t)HI(t)U0(t) is the interaction term in the

interaction picture. This means that the initial state |ψ0〉 is
supposed to be an eigenstate of H̃I(t) for all t . It should be
stressed that |ψ0〉 being an eigenvector of H̃I(t) does not need
to be an eigenvector of HI(t), which is clear from Eq. (6). Note,
however, that if |ψ0〉 satisfies

HI(t)|ψ0〉 = a(t) |ψ0〉 , (8)

and

[HI(t) − a(t)I]H0(t1)H0(t2) . . . H0(tn)|ψ0〉 = 0 , (9)

for n = 1,2, . . ., then Eq. (6) is surely satisfied (cf. Ap-
pendix A). It should be stressed that Eqs. (8) and (9) are only
sufficient but not necessary conditions for |ψ0〉 to be an IFE
state. The condition in Eq. (7) [as well as that in Eq. (6)] is
both necessary and sufficient for |ψ0〉 to be IFE state.

Interestingly, in the time-independent case they reduce to

[HI − a I]Hn
0 |ψ0〉 = 0 , (10)

for n = 1,2, . . . ,N − 1, where N = dimH. It was proved [1]
that these conditions are both necessary and sufficient. It is
therefore clear that the time-dependent case is much more
complicated and rich, showing that |ψ0〉 needs not to be
eigenvector of HI(t) for t �= 0, but U0(t)|ψ0〉 must belong to an
eigenspace of the interaction Hamiltonian HI(t) at any time.

On the basis of Eq. (7) we can distinguish between two
possible situations where the interaction picture interaction
term is either time dependent or not. Nevertheless, in order to
be effective, such a classification should explore in detail also
a sort of “ gray zone” which corresponds to all those cases
where the Hamiltonian has a trivial time dependence, like, for
example, H̃I(t) = f (t)H̃I(0) (we will provide several examples
of this kind). Though we will not go through such a taxonomic

approach, in the examples given in the following sections we
will always comment on the specific relevant properties of
H̃I(t).

III. SINGLE SYSTEMS SUBJECTED
TO EXTERNAL FIELDS

As a class of time-dependent Hamiltonians that allow then
occurrence of interaction-free evolutions we will consider the
cases of magnetic moments immersed in suitable magnetic
fields.

A. Spin-1/2 particle

Let us consider a spin-1/2 particle immersed in a time-
dependent magnetic field. The corresponding Hamiltonian is
expressible as follows:

H (t) = −μB(t) · S , (11)

where S = (σx,σy,σz). Then we take the z contribution, for the
moment assumed to be time independent, as the unperturbed
Hamiltonian, and the rest as the interaction term (� = 1):

H0(t) = �

2
σz, (12a)

HI(t) = α(t)[cos(�t + φ)σx + sin(�t + φ)σy]. (12b)

We introduce the notation σθ = cos θσx + sin θσy . The
corresponding eigenvectors of σθ read

|±〉θ = 1√
2

(e−iθ/2|+〉 ± eiθ/2|−〉) , (13)

where |±〉 are the eigenstates of σz.
Now, suppose that the initial state |ψ0〉 is an eigenstate

of the operator σφ : |ψ0〉 = |±〉φ . It is easy to show that the
evolution operator associated to the unperturbed Hamiltonian,
which is nothing but a rotation along the z axis, maps such an
initial state into an instantaneous eigenstate of HI(t):

U0(t)|±〉φ = |±〉�t+φ

= 1√
2

(e−i(�t+φ)/2|+〉 ± ei(�t+φ)/2|−〉). (14)

In such a case the total evolution is essentially given by the
unperturbed evolution, up to a phase factor:

|±〉φ → U (t)|±〉φ = e∓iA(t)U0(t)|±〉φ
= e∓iA(t)|±〉�t+φ, (15)

with A(t) = ∫ t

0 α(s)ds. Of course in each subspace a different
phase due to HI is accumulated.

It is worth noting that we are beyond the trivial case where
H0 and HI commute. In fact, they do not commute at all, but
the operator U0(t) maps eigenstates of HI(0) into eigenstates
of HI(t).

This results are still valid if we generalize the Hamiltonian
model:

H (t) = H0(t) + HI(t)

= �(t)

2
σz+α(t)[cos(
(t))σx+α(t) sin(
(t))σy], (16)
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with


(t) =
∫ t

0
�(s)ds + φ . (17)

There is a clear physical interpretation in terms of classical
counterpart of such behaviors. We have a magnetic moment
m on the xy plane which is rotating under the action of a
magnetic field along z. Now we add another magnetic field
of the xy plane, say B⊥(t), which is always parallel to the
magnetic moment. At any instant of time, the component B⊥
does not act on the spin, since the relevant torque is vanishing
(τ = m × B⊥ = 0), and then the presence of B⊥ does not
affect the motion of the spin.

It should be clear that if HI = α[cos φσx + sin φσy] does
not depend on time, then there is no interaction-free state
corresponding to H0 = 1

2�(t)σz. This shows in a clear way
the difference between time-independent and time-dependent
cases.

B. Spin-1 particle

Let us now consider a toy model involving spin-1 operators
(cf. Appendix B). After introducing the following notation,

Lφ = cos φLx + sin φLy , (18)

we consider the following Hamiltonian:

H (t) = �(t)Lz + α(t)L2
φ(t) , (19a)

with

φ(t) =
∫ t

0
�(s)ds + φ(0) . (19b)

As the initial condition we take the state

|ψ0〉 = c−|−1〉φ(0) + c+|+1〉φ(0) , (20)

with

|±1〉φ = e−iφ

2
|+1〉 ± 1√

2
|0〉 + eiφ

2
|−1〉 , (21)

and |−1〉, |0〉, |+1〉 the eigenstates of Lz in the subspace with
l = 1.

This is an example where the unperturbed Hamiltonian
maps an eigenspace of the interaction Hamiltonian at the
initial time to the corresponding eigenspace of the interaction
Hamiltonian at time t . In fact, the operator L2

φ(t) has a twofold
degenerate subspace corresponding to the eigenvalue 1 and a
singlet corresponding to zero. This means that the two states
|−1〉φ(t) and |+1〉φ(t) do not “feel” the interaction Hamiltonian

except for the (same) phase accumulated, which is e−i
∫ t

0 α(s)ds .
It deserves to be noted that the examples in this section are

such that the relevant interaction Hamiltonian in the interaction
picture provides a commutative family of operators, i.e., it has
the following form H̃I(t) = f (t)H̃I(0). In fact, for spin-1/2 we
have

H̃I(t) = α(t)

(
0 e−iφ

eiφ 0

)
, (22)

and hence it has time-independent eigenvectors |±〉φ and time-
dependent eigenvalues ±α(t). For spin-1 one finds:

H̃I(t) = α(t)

⎛
⎝ 1 0 e−2iφ(0)

0 2 0
e2iφ(0) 0 1

⎞
⎠ (23)

which has a “static” doublet corresponding to the eigenvalue 1.

IV. ADIABATIC EVOLUTIONS

Also adiabatic evolutions can provide interesting examples
of interaction-free evolutions, though approximated. Consider
the Hamiltonian of the class used for stimulated Raman
adiabatic passage (STIRAP) [20–23]. The unperturbed Hamil-
tonian in the basis |1〉, |2〉, |3〉 reads

H0(t) =
⎛
⎝ 0 � sin θ (t) 0

� sin θ (t) � � cos θ (t)
0 � cos θ (t) 0

⎞
⎠ . (24)

The three instantaneous eigenvalues of H0 are given by

λ = 0 ,
� ± √

�2 + 4�2

2
. (25)

The instantaneous eigenstate corresponding to the zero eigen-
value reads

|v(t)〉 = cos θ (t)|1〉 − sin θ (t)|3〉 . (26)

In the adiabatic limit, assuming θ (0) = 0 and θ (∞) = π/2,
one has that the state |1〉 is adiabatically mapped into |3〉. This
is the essence of the counterintuitive STIRAP sequence.

Consider now the following additional interaction term:

HI(t) = ε(t)

⎛
⎝ cos2 θ (t) 0 − sin θ (t) cos θ (t)

0 0 0
− sin θ (t) cos θ (t) 0 sin2 θ (t)

⎞
⎠.

(27)

It consists of a direct interaction between the states |1〉 and
|3〉 and two shifts of the levels involved in such an interaction.

The state |v(t)〉 is an instantaneous eigenstate of the inter-
action term, corresponding to the eigenvalue ε(t). Therefore,
in the adiabatic limit associated to the change of H0(t), the
state |v(0)〉 is mapped into |v(t)〉, which does not feel HI(t),
except for the accumulation of a dynamical phase.

Of course, in this case the result is only approximated,
since the adiabatic evolution is only an approximation of the
complete evolution induced by H0(t).

Similar to the examples given in the previous section,
even in this example that we have provided for adiabatic
evolutions, the eigenstates of H̃I(t) do not change. Indeed,
since v|(t) is common instantaneous eigenstate of H0(t) and
HI(t), then it turns out that |v(0) is eigenstate of H̃I(t) at
every time, corresponding to the eigenvalue ε(t), and the
remaining subspace is the kernel of H̃I(t), and then H̃I(t) =
ε(t)/ε(0)H̃I(0).

V. ESSENTIAL TIME DEPENDENCE OF H̃I

Since all the examples given in the previous sections
are related to those cases where H̃I(t) has a trivial time
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dependence, in this section we provide some examples of
real time-dependent H̃I(t) which have some time-independent
eigenstates.

A. The multiphoton nonlinear JC model

The Hamiltonian

H (t) = ωn̂ + �

2
σz + γ [e−i(�−kω−�)t f (n̂)âkσ+ + H.c.]

(28)

can be obtained, for example, in the physical scenario of
trapped ions subjected to a laser slightly off-resonant to the
kth red sideband (ωL = � − kω − �), out of the Lamb-Dicke
limit (which implies the presence of the “coefficient” f (n̂))
and in the rotating wave approximation [24].

Taking

H0 = ωn̂ + �

2
σz , (29a)

HI(t) = γ [ei(�−kω−�)t f (n̂)âkσ+ + H.c.] , (29b)

one can easily prove that

H̃I(t) = γ [e−i�tf (n̂)âkσ+ + H.c.] , (30)

and that the multiplet {|0,g〉, |1,g〉, . . . ,|k − 1,g〉} (with
σz|g〉 = −|g〉) defines an eigenspace of H̃I(t). Of course, it
is not an eigenspace of H0, which implies that, though it is
interaction free, in this subspace there could be a nontrivial
evolution due to the action of H0.

Note that the interaction term in the interaction picture H̃I(t)
in this case is time dependent, though it has a time-independent
eigenspace (its kernel).

B. Sum of multiphoton JC models

Also the following Hamiltonian can be obtained in trapped
ions scenario:

H (t) = ωn̂ + �

2
σz + [(γk(t)âk + γl(t)â

l)σ+ + H.c.] . (31)

The time dependence of the coupling parameters γ ’s can be
realized through a modulation of the amplitudes of the laser
fields.

Let us assume that k > l. If γl = 0 then the kernel of the
interaction Hamiltonian is generated by all the states |m,g〉
with m = 0,1, . . . ,k − 1, while in the other case we have
only the states with m = 0,1, . . . ,l − 1. Therefore, in the case
where γl(t) changes and vanishes at some instants of time, the
kernel of HI changes, but some states always belong to it. Such
states (m � l − 1) and all their linear combinations undergo
interaction-free evolution.

These two examples can be properly generalized consid-
ering, for example, �(t) instead of a time-independent �, in
order to have a time-dependent H0.

VI. DISCUSSION

In this paper we have generalized the concept of IFE to
the case of time-dependent Hamiltonians. We have first of
all provided necessary and sufficient conditions for such an
occurrence. Then, we have presented several examples, related

to different possible structures of the system under scrutiny.
The very first examples (spin-1/2 and spin-1) analyze small
quantum systems interacting with time-dependent classical
fields. In particular, in the case of spin-1 we discuss the case
where an IFE eigenspace is present (the doublet corresponding
to angular momentum projections equal to −1 and +1). In
the subsequent example we have considered IFE states in the
presence of an adiabatic evolution, especially in the context of
STIRAP. Finally, in Sec. V we have considered two cases
of spin-boson interaction (for example the vibrational and
electronic degrees of freedom of a trapped ion). In such a
situation, we have two interacting subsystems, each one not
feeling the interaction with the other, if the total system is
prepared in suitable (IFE) states. Moreover, in one case, the
IFE subspace has dimension varying in time.

On the basis of the analysis developed in Sec. II, we know
that the more compact conditions to find out IFE subspaces is
that IFE states are nothing but states which are eigenstates
of the interaction-picture interaction Hamiltonian at every
time instant, which really clarify the physical origin of the
dynamical features of such states.

At this point, it is worth mentioning that the concept of
IFE states (whether with time-independent or time-dependent
Hamiltonian), when applied to a system interacting with
its environment, has some connection with the concept of
decoherence-free subspaces, as already pointed out in Ref. [1].
Nevertheless, reporting on a detailed analysis of the relation
between IFE and DFS is beyond the scope of this paper and
will be presented elsewhere.
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APPENDIX A

The evolution operator U0(t) associated to the unperturbed
Hamiltonian H0(t) can be expanded as

U0(t) = I − i

∫ t

0
H0(t1)dt1

+ (−i)2
∫ t

0
dt1

∫ t1

0
H0(t1)H0(t2)dt2 + · · · . (A1)

Thus,

HI(t)U0(t)|ψ0〉

= HI(t)|ψ0〉 − i

∫ t

0
HI(t)H0(t1)dt1|ψ0〉

+ (−i)2
∫ t

0
dt1

∫ t1

0
HI(t)H0(t1)H0(t2)dt2|ψ0〉 + · · · .

(A2)

Starting from Eq. (A2) it is immediate to convince oneself that
if |ψ0〉 satisfies Eqs. (8) and (9) then

HI(t)U0(t)|ψ0〉 = a(t) U0(t)|ψ0〉 , (A3)

that is, |ψ0〉 is an IFE state.
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APPENDIX B

The spin-1 operators are defined as follows:

Lx = 1√
2

⎛
⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎠ , (B1a)

Ly = 1√
2

⎛
⎜⎝

0 −i 0

i 0 −i

0 i 0

⎞
⎟⎠ , (B1b)

Lz =
⎛
⎝1 0 0

0 0 0

0 0 −1

⎞
⎠ . (B1c)

The operator Lφ has eigenvalues {0,1,−1} corresponding
to the following eigenstates:

|0〉φ = e−iφ

2
|+1〉 − eiφ

2
|−1〉 , (B2a)

|±1〉φ = e−iφ

2
|+1〉 ± 1√

2
|0〉 + eiφ

2
|−1〉 . (B2b)

Its square,

L2
φ = 1

2

⎛
⎝ 1 0 e−2iφ

0 2 0
e2iφ 0 1

⎞
⎠ , (B3)

has the same eigenstates and the following eigenvalues: 0
(singlet) and 1 (doublet).
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