31 research outputs found

    An investigation of the effects of lipid-lowering medications: genome-wide linkage analysis of lipids in the HyperGEN study

    Get PDF
    BACKGROUND: Use of anti-hyperlipidemic medications compromises genetic analysis because of altered lipid profiles. We propose an empirical method to adjust lipid levels for medication effects so that the adjusted lipid values substitute the unmedicated lipid values in the genetic analysis. RESULTS: Published clinical trials were reviewed for HMG-CoA reductase inhibitors and fibric acid derivatives as mono-drug therapy. HMG-CoA reductase inhibitors showed similar effects in African Americans (AA) and non-African Americans (non-AA) for lowering total cholesterol (TC, -50.7 mg/dl), LDL cholesterol (LDL-C, -48.1 mg/dl), and triglycerides (TG, -19.7 mg/dl). Their effect on increasing HDL cholesterol (HDL-C) in AA (+0.4 mg/dl) was lower than in Non-AA (+2.3 mg/dl). The effects of fibric acid derivatives were estimated as -46.1 mg/dl for TC, -40.1 mg/dl for LDL-C, and +5.9 mg/dl for HDL-C in non-AA. The corresponding effects in AA were less extreme (-20.1 mg/dl, -11.4 mg/dl, and +3.1 mg/dl). Similar effect for TG (59.0 mg/dl) was shown in AA and non-AA. The above estimated effects were applied to a multipoint variance components linkage analysis on the lipid levels in 2,403 Whites and 2,214 AA in the HyperGEN study. The familial effects did vary depending on whether the lipids were adjusted for medication use. For example, the heritabilities increased after medication adjustment for TC and LDL-C, but did not change significantly for HDL-C and TG. CONCLUSION: Ethnicity-specific medication adjustments using our empirical method can be employed in epidemiological and genetic analysis of lipids.National Heart, Lung, and Blood Institute (HL554471, HL54472, HL54473, HL54495, HL54496, HL54497, HL54509, HL54515

    A Locked Nucleic Acid Antisense Oligonucleotide (LNA) Silences PCSK9 and Enhances LDLR Expression In Vitro and In Vivo

    Get PDF
    The proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in the etiology of familial hypercholesterolemia (FH) and is also an attractive therapeutic target to reduce low density lipoprotein (LDL) cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR) and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol.The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA) antisense oligonucleotide (LNA ASO) that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT) levels revealed that long term LNA ASO treatment (7 weeks) does not cause hepatotoxicity.LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic syndrome

    Improved cardiovascular outcomes following temporal advances in lipid-lowering therapy in a genetically-characterised cohort of familial hypercholesterolaemia homozygotes

    No full text
    Background and aims There is a paucity of data concerning the influence of lipid-lowering therapy on cardiovascular (CV) outcomes in patients with homozygous familial hypercholesterolaemia (FH). To redress this a retrospective analysis was undertaken of the demographic features, lipid levels, low density lipoprotein receptor and Autosomal Recessive Hypercholesterolaemia gene mutations, CV outcomes and vital status of 44 FH homozygotes referred to a single centre in the UK between 1964 and 2014. Methods Data were obtained from past publications, case records and death certificates. Differences in categorical and continuous variables between living and dead patients were analysed using Fisher's exact test and an independent t-test respectively. Results During the 50 years covered by this survey 13 patients have died, 30 are still alive and 1 was lost to follow up. The mean age of Alive patients was 32.6 ± 11.5 versus 28.3 ± 14.9 years in Dead ones (P = 0.31) and they were born 18 years later (P = 0.0001). Pre-treatment serum total cholesterol (TC) was similar in Alive and Dead (20.2 ± 5.1 v 21.3 ± 4.4 mmol/l, P = 0.52) but on-treatment TC was lower in Alive than Dead (8.1 ± 2.8 v 14.5 ± 6.0 mmol/l, P = 0.0001) and CV adverse events were far less frequent (eg aortic stenosis, 33% v 77%, P = 0.02). Conclusions The lower on-treatment TC and fewer CV adverse events in FH homozygotes still living reflect advances in apheresis and drug therapy since the 1990s. Further improvements in prognosis can be expected with the impending introduction of novel lipid-lowering agents

    A novel missense mutation in ABCA1 results in altered protein trafficking and reduced phosphatidylserine translocation in a patient with Scott syndrome

    No full text
    Scott syndrome (SS) is a bleeding disorder characterized by a failure to expose phosphatidylserine (PS) to the outer leaflet of the platelet plasma membrane. Because the adenosine triphosphate (ATP)–binding cassette transporter A1 (ABCA1) is implicated in the exofacial translocation of PS, we assessed its role in the pathophysiology of a patient with SS. Substantially reduced levels of ABCA1 mRNA were found in the patient's leukocytes, compared with controls. The SS patient was heterozygous for a novel missense mutation c.6064G>A (ABCA1 R1925Q), absent from unaffected family members and controls. Both mutant and wild-type alleles were reduced in mRNA expression, and no causative mutation for this phenomenon was identified in the ABCA1 gene or its proximal promoter, suggesting a putative second mutation in a trans-acting regulatory gene may also be involved in the disorder in this patient. In vitro expression studies showed impaired trafficking of ABCA1 R1925Q to the plasma membrane. Overexpression of wild-type ABCA1 in SS lymphocytes complemented the Ca2+-dependent PS exposure at the cell surface. These data identify a mutation in ABCA1 that contributes to the defective PS translocation phenotype in our patient with SS
    corecore