153 research outputs found

    Numerical simulation of flow and contaminant migration at a municipal landfill

    Get PDF
    The flow and transport characteristics of the Ano Liosia Landfill site i

    Towards the theory of ferrimagnetism

    Full text link
    Two-sublattice ferrimagnet, with spin-s1s_1 operators S1i\bf{S_{1i}} at the sublattice AA site and spin-s2s_2 operators S2i\bf{S_{2i}} at the sublattice BB site, is considered. The magnon of the system, the transversal fluctuation of the total magnetization, is a complicate mixture of the transversal fluctuations of the sublattice AA and BB spins. As a result, the magnons' fluctuations suppress in a different way the magnetic orders of the AA and BB sublattices and one obtains two phases. At low temperature (0,T)(0,T^*) the magnetic orders of the AA and BB spins contribute to the magnetization of the system, while at the high temperature (T,TN)(T^*,T_N), the magnetic order of the spins with a weaker intra-sublattice exchange is suppressed by magnon fluctuations, and only the spins with stronger intra-sublattice exchange has non-zero spontaneous magnetization. The TT^* transition is a transition between two spin-ordered phases in contrast to the transition from spin-ordered state to disordered state (TNT_N-transition). There is no additional symmetry breaking, and the Goldstone boson has a ferromagnetic dispersion in both phases. A modified spin-wave theory is developed to describe the two phases. All known Neel's anomalous M(T)M(T) curves are reproduced, in particular that with "compensation point". The theoretical curves are compared with experimental ones for sulpho-spinel MnCr2S4xSexMnCr2S_{4-x}Se_{x} and rare earth iron garnets.Comment: 9 pages, 8 figure

    Generalized CP^1 model from t_1-t_2-J model

    Full text link
    A long-wavelength, low-frequency effective theory is obtained from t1t2Jt_1-t_2-J model. The action is written in terms of two-component bose spinor fields (CP^1 fields) and two spinless Fermi fields. The generalized CP^1 model is invariant under U(1) gauge transformations. The bose fields and one of the Fermi fields have charge +1 while the other Fermi field has charge -1 with respect to these transformations. A simple mean-feild theory of a gauge-symmerty breaking, based on a four-fermion interaction, is discussed. An effective theory of frustrated antiferromagnetism is obtained integrating out the Fermi fields around the mean-fields. Another option is used to parametrize the long distance fluctuations in t1t2Jt_1-t_2-J model, with the help of gauge invariant fields. It is argued that the resulting Fermi quasiparticles of the t1t2Jt_1-t_2-J model have both charge and spin. The effective action is rewritten in terms of spin 1/2 Fermi spinor, which has the charge of the holes, and unit vector.Comment: 22 pages, RevTex, no figure

    Magnon-Paramagnon Effective Theory of Itinerant Ferromagnets

    Full text link
    The present work is devoted to the derivation of an effective magnon-paramagnon theory starting from a microscopic lattice model of ferromagnetic metals. For some values of the microscopic parameters it reproduces the Heisenberg theory of localized spins. For small magnetization the effective model describes the physics of weak ferromagnets in accordance with the experimental results. It is written in a way which keeps O(3) symmetry manifest,and describes both the order and disordered phases of the system. Analytical expression for the Curie temperature,which takes the magnon fluctuations into account exactly, is obtained. For weak ferromagnets TcT_c is well below the Stoner's critical temperature and the critical temperature obtained within Moriya's theory.Comment: 14 pages, changed content,new result

    Visual speech differentially modulates beta, theta, and high gamma bands in auditory cortex

    Get PDF
    Speech perception is a central component of social communication. While principally an auditory process, accurate speech perception in everyday settings is supported by meaningful information extracted from visual cues (e.g., speech content, timing, and speaker identity). Previous research has shown that visual speech modulates activity in cortical areas subserving auditory speech perception, including the superior temporal gyrus (STG), potentially through feedback connections from the multisensory posterior superior temporal sulcus (pSTS). However, it is unknown whether visual modulation of auditory processing in the STG is a unitary phenomenon or, rather, consists of multiple temporally, spatially, or functionally distinct processes. To explore these questions, we examined neural responses to audiovisual speech measured from intracranially implanted electrodes within the temporal cortex of 21 patients undergoing clinical monitoring for epilepsy. We found that visual speech modulates auditory processes in the STG in multiple ways, eliciting temporally and spatially distinct patterns of activity that differ across theta, beta, and high-gamma frequency bands. Before speech onset, visual information increased high-gamma power in the posterior STG and suppressed beta power in mid-STG regions, suggesting crossmodal prediction of speech signals in these areas. After sound onset, visual speech decreased theta power in the middle and posterior STG, potentially reflecting a decrease in sustained feedforward auditory activity. These results are consistent with models that posit multiple distinct mechanisms supporting audiovisual speech perception and provide a crucial map for subsequent studies to identify the types of visual features that are encoded by these separate mechanisms.This study was supported by NIH Grant R00 DC013828 A. Beltz was supported by the Jacobs Foundation.http://deepblue.lib.umich.edu/bitstream/2027.42/167729/1/OriginalManuscript.pdfDescription of OriginalManuscript.pdf : Preprint of the article "Multiple auditory responses to visual speech"SEL
    corecore