401 research outputs found

    CP violating dimuon charge asymmetry in general left-right models

    Full text link
    The recently measured charge asymmetry of like-sign dimuon events by the D0 collaboration at Tevatron shows the 3.9 \sigma\ deviation from the standard model prediction. In order to solve this mismatch, we investigate the right-handed current contributions to BsBˉsB_s-\bar{B}_s and BdBˉdB_d-\bar{B}_d mixings which are the major source of the like-sign dimuon events in bbˉb \bar{b} production in general left-right models without imposing manifest or pseudo-manifest left-right symmetry. We find the allowed region of new physics parameters satisfying the current experimental data.Comment: 9 pages, 4 figure

    Singlet Fermionic Dark Matter with Dark ZZ

    Full text link
    We present a fermionic dark matter model mediated by the hidden gauge boson. We assume the QED-like hidden sector which consists of a Dirac fermion and U(1)X_X gauge symmetry, and introduce an additional scalar electroweak doublet field with the U(1)X_X charge as a mediator. The hidden U(1)X_X symmetry is spontaneously broken by the electroweak symmetry breaking and there exists a massive extra neutral gauge boson in this model which is the mediator between the hidden and visible sectors. Due to the U(1)X_X charge, the additional scalar doublet does not couple to the Standard Model fermions, which leads to the Higgs sector of type I two Higgs doublet model. The new gauge boson couples to the Standard Model fermions with couplings proportional to those of the ordinary ZZ boson but very suppressed, thus we call it the dark ZZ boson. We study the phenomenology of the dark ZZ boson and the Higgs sector, and show the hidden fermion can be the dark matter candidate.Comment: 10 pages, 3 figure

    Block Design-Based Local Differential Privacy Mechanisms

    Full text link
    In this paper, we propose a new class of local differential privacy (LDP) schemes based on combinatorial block designs for a discrete distribution estimation. This class not only recovers many known LDP schemes in a unified framework of combinatorial block design, but also suggests a novel way of finding new schemes achieving the optimal (or near-optimal) privacy-utility trade-off with lower communication costs. Indeed, we find many new LDP schemes that achieve both the optimal privacy-utility trade-off and the minimum communication cost among all the unbiased schemes for a certain set of input data size and LDP constraint. Furthermore, to partially solve the sparse existence issue of block design schemes, we consider a broader class of LDP schemes based on regular and pairwise-balanced designs, called RPBD schemes, which relax one of the symmetry requirements on block designs. By considering this broader class of RPBD schemes, we can find LDP schemes achieving near-optimal privacy-utility trade-off with reasonably low communication costs for a much larger set of input data size and LDP constraint.Comment: 18 pages, 3 figures, and 1 table. This manuscript was submitted to IEEE Transactions on Information Theory and a short version of this manuscript will be presented at 2023 IEEE International Symposium on Information Theor

    The Characteristics of Necessity, Commoner, and Parasite with Multicultural Data Comparison

    Get PDF
    Three different types of employees can be found in workplaces all over the world: “Necessities,” “Commoners,” and “Parasites.” A person is a Necessity if s/he is irreplaceable and crucial to the functioning of an organization. A Commoner is a person of normal ability and talent who has no significant impact on organizational success. Parasites are detrimental freeloaders who damage the functioning of an organization. To identify the principal characteristics of these three types of workers, a group of researchers led by Chong W. Kim conducted six studies in which they collected survey data from undergraduate and graduate business students in the U.S., India, Korea, Chile, and Japan. The results of this research effort are reported in Kim & Sikula (2005), Kim & Sikula (2006), Kim, Sikula & Smith (2006), Kim, Cho & Sikula (2007), Kim, Arias- Bolzmann & Smith (2008), and Kim, Arias-Bolzmann & Magoshi (2009). The summary of these six studies has been reported in Kim, Smith, Sikula & Anderson (2011). The purpose of this article is to compare the results of the summary study with a new set of data, which was collected from a multicultural student body. The authors note the points of commonality between the data sets and offer their thoughts on future research in this area

    Phenomenology of a two-component dark matter model

    Full text link
    We study a two-component dark matter model consisting of a Dirac fermion and a complex scalar charged under new U(1) gauge group in the hidden sector. The dark fermion plays the dominant component of dark matter which explains the measured DM relic density of the Universe. It has no direct coupling to ordinary standard model particles, thus evading strong constraints from the direct DM detection experiments. The dark fermion is self-interacting through the light dark gauge boson and it would be possible to address that this model can be a resolution to the small scale structure problem of the Universe. The light dark gauge boson, which interacts with the standard model sector, is also stable and composes the subdominant DM component. We investigate the model parameter space allowed by current experimental constraints and phenomenological bounds. We also discuss the sensitivity of future experiments such as SHiP, DUNE and ILC, for the obtained allowed parameter space.Comment: 13 pages, 1 figure, journal versio

    Vacuum stability of conformally invariant scalar dark matter models

    Full text link
    We discuss vacuum structure and vacuum stability in classically scale-invariant renormalizable models with a scalar dark matter multiplet of global O(N) symmetry together with an electroweak singlet scalar mediator. Our conformally invariant scalar potential generates the electroweak symmetry breaking via the Coleman-Weinberg mechanism, and the new scalar singlet mediator acquires its mass through radiative corrections of the scalar dark matters as well as of the standard model particles. Taking into account the present collider bounds, we find the region of parameter space where the scalar potential is stable and all the massless couplings are perturbative up to the Planck scale. With the obtained parameter sets satisfying the vacuum stability condition, we present the allowed region of new physics parameters satisfying the recent measurement of relic abundance, and predict the elastic scattering cross section of the new scalar multiplet into target nuclei for a direct detection of the dark matter. We also discuss the collider signatures and future discovery potentials of the new scalars.Comment: 11 pages, 6 figures (partly updated), journal version. arXiv admin note: text overlap with arXiv:1904.1020
    corecore