62,880 research outputs found

    Universal low-temperature properties of quantum and classical ferromagnetic chains

    Full text link
    We identify the critical theory controlling the universal, low temperature, macroscopic properties of both quantum and classical ferromagnetic chains. The theory is the quantum mechanics of a single rotor. The mapping leads to an efficient method for computing scaling functions to high accuracy.Comment: 4 pages, 2 tables and 3 Postscript figure

    Gluon Propagators and Confinement

    Get PDF
    We present SU(3) gluon propagators calculated on 48*48*48*N_t lattices at beta=6.8 where N_t=64 (corresponding the confinement phase) and N_t=16 (deconfinement) with the bare gauge parameter,alpha, set to be 0.1. In order to avoid Gribov copies, we employ the stochastic gauge fixing algorithm. Gluon propagators show quite different behavior from those of massless gauge fields: (1) In the confinement phase, G(t) shows massless behavior at small and large t, while around 5<t<15 it behaves as massive particle, and (2) effective mass observed in G(z) becomes larger as z increases. (3) In the deconfinement phase, G(z) shows also massive behavior but effective mass is less than in the confinement case. In all cases, slope masses are increasing functions of t or z, which can not be understood as addtional physical poles.Comment: 6 pages in Postscrip

    Design and development of the redundant launcher stabilization system for the Atlas 2 launch vehicle

    Get PDF
    The Launcher Stabilization System (LSS) is a pneumatic/hydraulic ground system used to support an Atlas launch vehicle prior to launch. The redesign and development activity undertaken to achieve an LSS with increased load capacity and a redundant hydraulic system for the Atlas 2 launch vehicle are described
    corecore