20 research outputs found

    Carbon nanotubes as a player to improve mechanical shock wave absorption

    No full text
    International audienceThe overall goal of the research is to develop a composite simultaneously able to absorb mechanical shocks. In this paper, carbon nanotubes (CNTs) based polymers were used to enhance the wave absorption capacity against shock load. The material consists of an epoxy polymer reinforced with various concentrations of CNTs: 1%, 2% and 4 wt%. An experimental procedure was developed for material characterization. The specimen was sandwiched between two steel bars (incident and transmitted bars), with 20 mm in the diameter. The shock wave was generated by a launching device drives the striker to hit 1 bar, and then the wave propagates throughout the specimen. Two strain gauges were placed on the surface of each bar with 1 m of the distance from the specimen surface. The wave intensity was recorded using a data acquisition system (HBM GEN3i model). The full histories of strain, force and the energy absorption during the shock time were measured. With 4% mass fraction of CNTs, the shock wave intensity was reduced to 33.34% compared to 0% of CNTs. The results show also that the specimen with CNTs is able to absorb high energy impacts

    Numerical Simulation of the Impact ofIce Accumulation on a Composite Wind Turbine Blades located in a Cold Climate

    No full text
    The blades of wind turbines placed in cold climate regions are exposed to the risk of icing phenomena which impact their lifetimes. This paper proposes a numerical model to simulate 50 mm ice thickness localized on the tip side of a horizontal wind turbine blade, and to study its mechanical behavior. The wind turbine blade wasmodeled with the finite element method (FEM)in ABAQUS software taking into account aerodynamic, centrifugal and inertial loads under the conditions of service of the blade.Numerical tests haveevaluated the behavior of different composite materials and compared with each other. Damage mode based on the Hashin criteria was defined. Carbon fibers were considered to be the most rigid material which results in thinner, stiffer and lighter blades

    A review on the technologies, design considerations and numerical models of tidal current turbines

    No full text
    Tidal current turbine is one of the innovative and emerging technologies of marine renewable energies because it offers constant and predictable energy source that can be very beneficial, especially for commercial scale production of electrical power. Hydrofoils (HF) are essential elements of tidal current turbine (TCT) and should be properly designed as they play a vital role in improving the turbine output and providing adequate resistance to the blade structure. In connection with the hydrofoil designs, it is noteworthy that the primary objectives in their designs are to increase the coefficient of lift and to reduce the coefficients of drag and pitching moment, thus delaying the cavitation phenomenon. In this paper, the technology developments of the hydrofoil designs used in the horizontal axis TCT industry are reviewed, including the hydrodynamics design and the mechanical structure design. Besides, an up-todate review and the newest achievements of marine TCT technologies with their developing histories are further explored. Included are also reviews on the numerical models used to assess the performance of TCT and optimization methods applied to design the hydrofoils. This in turn significantly contributes to a better knowledge on the recent designs of TCT hydrofoils for the researchers working in the marine turbine energy domain. Such information could also have important implications in the design of more sophisticated hydrofoils for the exploitation in diverse tidal current energy technologies for reaching a sustainable future

    Modal analysis of composite nozzle for an optimal design of a tidal current turbine

    No full text
    International audienceMonitoring of structural vibrations and operational modal analysis are clearly essential to effectively control structural safety and the operational behavior of tidal current turbines. In order to satisfy industrial requirements, generally related to a mass gain problem, hybridization provides an excellent method to improve the breaking strength of composite materials, while keeping adequate mechanical performance for marine renewable energy applications. In this context, this work aims to study the structural modal analysis of a tidal turbine nozzle and the effect of hybrid materials (carbon/Glass) on the natural frequencies and corresponding mode shapes of the three laminates. The modal analysis was calculated by the Finite Element Method using ABAQUS software. According to the results, the stacking sequence has a considerable impact on the natural frequency of the nozzle. Furthermore, it is also found that the resonance effect does not appear for the three laminates under investigation

    A Comprehensive Numerical Investigation on the Mechanical Performance of Hybrid Composite Tidal Current Turbine under Accidental Impact

    No full text
    The composite tidal turbine nozzle can be exposed to impact loads during maintenance or installation operations, which may result in invisible damage. Therefore, it is very important to analyse the induced damage in order to conceive hybrid composite nozzles with better resistance to damage. The low-velocity impact behaviour (LVI) of a carbon/glass hybrid composite nozzle has been investigated based on this motivation. The configurations of stacking sequences were constituted of glass and carbon fibers. The results acquired were compared between five various laminated. Indeed, the impact was studied in the leading edge region of the nozzle. The damaged laminates were inspected by the finite element method (FEM) based on Hashin failure criterion using the ABAQUS software. The energy conservation of the nozzle was verified to validate the numerical model. Futhermore, the effect of accidental impact on dynamic response and the damage induced on a hybrid composite nozzle have been investigated. According to results, the formation of damage like matrix cracking on the external/internal surfaces and radial cracking may occur. In addition, the hybrid nozzle with CCC (carbon/carbon/carbon), and CGG (carbon/glass/glass) stacking has greater impact resistance compared to other configurations

    Inter laminar failure behavior in laminate carbon nanotubes-based polymer composites

    No full text
    International audienceDelamination progressive in carbon nanotubes reinforced composites under applied Short Beam Shear test was studied. Experimental characterization was carried out using ASTM D2344 standard norms for different carbon nanotubes mass fractions ranging from 0 to 4%. Failure modes and the delamination were experimentally characterized by scanning electron microscopy and Kayence microscopy to assess the failure behavior. The numerical model was created under ABAQUS software based on the cohesive zone models. The numerical model was formulated according to the damage mechanics. In these models, the cohesive interaction was implanted between elements of each fabric ply to control the initiation and the propagation of the delamination for different carbon nanotubes fractions. The force–displacement curves vs. carbon nanotubes added were obtained for the numerical model and shown to be in good agreement with the experimental data. The effect of carbon nanotubes on the progressive delamination was elucidated

    Additive manufacturing in fighting against novel coronavirus COVID-19

    No full text
    Nowadays, COVID-19 also known as novel coronavirus has become a global pandemic by causing severe respiratory tract infections in humans without any definite treatment or vaccine. Therefore, disease control measures include slowing down or averting the transfer of this viral infection from person to person. Continuous efforts are carried out to avoid the transmission of this disease to frontline healthcare personnel using single-use personal protective equipment (PPE). However, a critical shortage in this equipment around the world is becoming an alarming concern. Therefore, it is vital to present a possible alternative to overcome the acute shortage of protective gear such as face masks against this infectious disease which can have universal accessibility and is easily available. Additive manufacturing (AM), also known as 3D printing, is a possible solution to overcome the shortage of protective gear and can play a vital role in supporting their conventional production supplies during this global pandemic situation. In this context, this paper provides a brief background study of COVID-19, its conventional preventive measure, and a detailed overview regarding the latest AM efforts including designers’ providers and makers in the 3D printing community. Moreover, numerous inquiries and questions such as technical factors, testing recommendations and characterization methods and biological concerns such as biocompatibility and sterilization for the AM manufactured medical devices are addressed in this paper. In the end, two examples of AM medical devices, i.e., face mask and Ambu bag ventilator, are presented and studied through numerical simulations

    Evaluation of durability of composite materials applied to renewable marine energy: Case of ducted tidal turbine

    No full text
    Composite materials are used in many marine structures such as renewable marine energy conversion systems because of their fairly good mechanical properties and especially their low densities compared to traditional materials. The most advanced features currently available in finite element (FE) Abaqus/Explicit have been employed to simulate the behavior of the composite nozzle under hydrodynamic and impact loading. A hydrodynamic analysis was considered to design the nozzle turbine and the hydrodynamic pressure obtained was then implemented as boundary conditions to a FE code. The goal of this article is to evaluate the durability of composite materials of a ducted tidal turbine under critical loads (hydrodynamic and hydrostatic pressures) with the implementation of a failure criterion using the finite element analysis (FEA). The mechanical behavior was analyzed for two materials (Carbon–epoxy/ Glass–polyester). This has been accomplished by forming a user-created routine (VUMAT) and executing it in the ABAQUS software. Keywords: Marine composite structures, Ducted tidal turbine, Finite element analysis, VUMA
    corecore