83 research outputs found

    Modulation of apoptosis by V protein mumps virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Urabe AM9 vaccine strain of mumps virus contains two variants of V protein: VWT (of HN-A1081 viral population) and VGly (of HN-G1081). The V protein is a promoting factor of viral replication by blocking the IFN antiviral pathway.</p> <p>Findings</p> <p>We studied the relationship between V protein variants and IFN-α2b-induced apoptosis. V proteins decrease activation of the extrinsic IFN-α2b-induced apoptotic pathway monitored by the caspase 8 activity, being the effect greater with the VWT protein. Both V proteins decrease the activity of caspase 9 of the intrinsic apoptotic pathway. In a system without IFN, the VWT and VGly proteins expression promotes activation of caspases 3 and 7. However, when the cellular system was stimulated with IFN-α, this activity decreased partially. TUNEL assay shows that for treatment with IFN-α and ibuprofen of cervical adenocarcinoma cells there is nuclear DNA fragmentation but the V protein expression reduces this process.</p> <p>Conclusions</p> <p>The reduction in the levels of caspases and DNA fragmentation, suggesting that V protein, particularly VWT protein of Urabe AM9 vaccine strain, modulates apoptosis. In addition, the VWT protein shows a protective role for cell proliferation in the presence of antiproliferative signals.</p

    Selective blockade of interferon-α and -β reveals their non-redundant functions in a mouse model of West Nile virus infection

    Get PDF
    Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-β and the multiple subtypes of IFN-α, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-α and IFN-β have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-α has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-β or multiple subtypes of murine IFN-α. Using these mAbs, we distinguish specific contributions of IFN-β versus IFN-α in restricting viral pathogenesis and identify IFN-α as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-β versus IFN-α in murine models of infection, immunity, and autoimmunity

    Interaction of mumps virus V protein variants with STAT1-STAT2 heterodimer: experimental and theoretical studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mumps virus V protein has the ability to inhibit the interferon-mediated antiviral response by inducing degradation of STAT proteins. Two virus variants purified from Urabe AM9 mumps virus vaccine differ in their replication and transcription efficiency in cells primed with interferon. Virus susceptibility to IFN was associated with insertion of a non-coded glycine at position 156 in the V protein (VGly) of one virus variant, whereas resistance to IFN was associated with preservation of wild-type phenotype in the V protein (VWT) of the other variant.</p> <p>Results</p> <p>VWT and VGly variants of mumps virus were cloned and sequenced from Urabe AM9 vaccine strain. VGly differs from VWT protein because it possesses an amino acid change Gln<sub>103</sub>Pro (Pro<sup>103</sup>) and the Gly<sup>156 </sup>insertion. The effect of V protein variants on components of the interferon-stimulated gene factor 3 (ISGF3), STAT1 and STAT2 proteins were experimentally tested in cervical carcinoma cell lines. Expression of VWT protein decreased STAT1 phosphorylation, whereas VGly had no inhibitory effect on either STAT1 or STAT2 phosphorylation. For theoretical analysis of the interaction between V proteins and STAT proteins, 3D structural models of VWT and VGly were predicted by comparing with simian virus 5 (SV5) V protein structure in complex with STAT1-STAT2 heterodimer. <it>In silico </it>analysis showed that VWT-STAT1-STAT2 complex occurs through the V protein Trp-motif (W<sup>174</sup>, W<sup>178</sup>, W<sup>189</sup>) and Glu<sup>95 </sup>residue close to the Arg<sup>409 </sup>and Lys<sup>415 </sup>of the nuclear localization signal (NLS) of STAT2, leaving exposed STAT1 Lys residues (K<sup>85</sup>, K<sup>87</sup>, K<sup>296</sup>, K<sup>413</sup>, K<sup>525</sup>, K<sup>679</sup>, K<sup>685</sup>), which are susceptible to proteasome degradation. In contrast, the interaction between VGly and STAT1-STAT2 heterodimer occurs in a region far from the NLS of STAT2 without blocking of Lys residues in both STAT1 and STAT2.</p> <p>Conclusions</p> <p>Our results suggest that VWT protein of Urabe AM9 strain of mumps virus may be more efficient than VGly to inactivate both the IFN signaling pathway and antiviral response due to differences in their finest molecular interaction with STAT proteins.</p

    Dual requirement of cytokine and activation receptor triggering for cytotoxic control of murine cytomegalovirus by NK cells

    Get PDF
    Natural killer (NK) cells play a critical role in controlling murine cytomegalovirus (MCMV) and can mediate both cytokine production and direct cytotoxicity. The NK cell activation receptor, Ly49H, is responsible for genetic resistance to MCMV in C57BL/6 mice. Recognition of the viral m157 protein by Ly49H is sufficient for effective control of MCMV infection. Additionally, during the host response to infection, distinct immune and non-immune cells elaborate a variety of pleiotropic cytokines which have the potential to impact viral pathogenesis, NK cells, and other immune functions, both directly and indirectly. While the effects of various immune deficiencies have been examined for general antiviral phenotypes, their direct effects on Ly49H-dependent MCMV control are poorly understood. To specifically interrogate Ly49H-dependent functions, herein we employed an in vivo viral competition approach to show Ly49H-dependent MCMV control is specifically mediated through cytotoxicity but not IFNγ production. Whereas m157 induced Ly49H-dependent degranulation, efficient cytotoxicity also required either IL-12 or type I interferon (IFN-I) which acted directly on NK cells to produce granzyme B. These studies demonstrate that both of these distinct NK cell-intrinsic mechanisms are integrated for optimal viral control by NK cells

    Transcriptional Upregulation of NLRC5 by Radiation Drives STING- and Interferon-Independent MHC-I Expression on Cancer Cells and T Cell Cytotoxicity.

    Get PDF
    Radiation therapy has been shown to enhance the efficacy of various T cell-targeted immunotherapies that improve antigen-specific T cell expansion, T regulatory cell depletion, or effector T cell function. Additionally, radiation therapy has been proposed as a means to recruit T cells to the treatment site and modulate cancer cells as effector T cell targets. The significance of these features remains unclear. We set out to determine, in checkpoint inhibitor resistant models, which components of radiation are primarily responsible for overcoming this resistance. In order to model the vaccination effect of radiation, we used a Listeria monocytogenes based vaccine to generate a large population of tumor antigen specific T cells but found that the presence of cells with cytotoxic capacity was unable to replicate the efficacy of radiation with combination checkpoint blockade. Instead, we demonstrated that a major role of radiation was to increase the susceptibility of surviving cancer cells to CD8+ T cell-mediated control through enhanced MHC-I expression. We observed a novel mechanism of genetic induction of MHC-I in cancer cells through upregulation of the MHC-I transactivator NLRC5. These data support the critical role of local modulation of tumors by radiation to improve tumor control with combination immunotherapy

    The Anti-interferon Activity of Conserved Viral dUTPase ORF54 is Essential for an Effective MHV-68 Infection

    Get PDF
    Gammaherpesviruses such as KSHV and EBV establish lifelong persistent infections through latency in lymphocytes. These viruses have evolved several strategies to counteract the various components of the innate and adaptive immune systems. We conducted an unbiased screen using the genetically and biologically related virus, MHV-68, to find viral ORFs involved in the inhibition of type I interferon signaling and identified a conserved viral dUTPase, ORF54. Here we define the contribution of ORF54 in type I interferon inhibition by ectopic expression and through the use of genetically modified MHV-68. ORF54 and an ORF54 lacking dUTPase enzymatic activity efficiently inhibit type I interferon signaling by inducing the degradation of the type I interferon receptor protein IFNAR1. Subsequently, we show in vitro that the lack of ORF54 causes a reduction in lytic replication in the presence of type I interferon signaling. Investigation of the physiological consequence of IFNAR1 degradation and importance of ORF54 during MHV-68 in vivo infection demonstrates that ORF54 has an even greater impact on persistent infection than on lytic replication. MHV-68 lacking ORF54 expression is unable to efficiently establish latent infection in lymphocytes, although it replicates relatively normally in lung tissues. However, infection of IFNAR−/− mice alleviates this phenotype, emphasizing the specific role of ORF54 in type I interferon inhibition. Infection of mice and cells by a recombinant MHV-68 virus harboring a site specific mutation in ORF54 rendering the dUTPase inactive demonstrates that dUTPase enzymatic activity is not required for anti-interferon function of ORF54. Moreover, we find that dUTPase activity is dispensable at all stages of MHV-68 infection analyzed. Overall, our data suggest that ORF54 has evolved anti-interferon activity in addition to its dUTPase enzymatic activity, and that it is actually the anti-interferon role that renders ORF54 critical for establishing an effective persistent infection of MHV-68

    Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins

    Get PDF
    corecore