68 research outputs found

    Traces of times past: Representations of temporal intervals in memory

    Get PDF
    Theories of time perception typically assume that some sort of memory represents time intervals. This memory component is typically underdeveloped in theories of time perception. Following earlier work that suggested that representations of different time intervals contaminate each other (Grondin, 2005; Jazayeri & Shadlen, 2010; Jones & Wearden, 2004), an experiment was conducted in which subjects had to alternate in reproducing two intervals. In two conditions of the experiment, the duration of one of the intervals changed over the experiment, forcing subjects to adjust their representation of that interval, while keeping the other constant. The results show that the adjustment of one interval carried over to the other interval, indicating that subjects were not able to completely separate the two representations. We propose a temporal reference memory that is based on existing memory models (Anderson, 1990). Our model assumes that the representation of an interval is based on a pool of recent experiences. In a series of simulations, we show that our pool model fits the data, while two alternative models that have previously been proposed do not

    Cognitive architectures as Lakatosian research programmes: two case studies

    Get PDF
    Cognitive architectures - task-general theories of the structure and function of the complete cognitive system - are sometimes argued to be more akin to frameworks or belief systems than scientific theories. The argument stems from the apparent non-falsifiability of existing cognitive architectures. Newell was aware of this criticism and argued that architectures should be viewed not as theories subject to Popperian falsification, but rather as Lakatosian research programs based on cumulative growth. Newell's argument is undermined because he failed to demonstrate that the development of Soar, his own candidate architecture, adhered to Lakatosian principles. This paper presents detailed case studies of the development of two cognitive architectures, Soar and ACT-R, from a Lakatosian perspective. It is demonstrated that both are broadly Lakatosian, but that in both cases there have been theoretical progressions that, according to Lakatosian criteria, are pseudo-scientific. Thus, Newell's defense of Soar as a scientific rather than pseudo-scientific theory is not supported in practice. The ACT series of architectures has fewer pseudo-scientific progressions than Soar, but it too is vulnerable to accusations of pseudo-science. From this analysis, it is argued that successive versions of theories of the human cognitive architecture must explicitly address five questions to maintain scientific credibility

    Studying strategies and types of players:Experiments, logics and cognitive models

    Get PDF
    How do people reason about their opponent in turn-taking games? Often, people do not make the decisions that game theory would prescribe. We present a logic that can play a key role in understanding how people make their decisions, by delineating all plausible reasoning strategies in a systematic manner. This in turn makes it possible to construct a corresponding set of computational models in a cognitive architecture. These models can be run and fitted to the participants’ data in terms of decisions, response times, and answers to questions. We validate these claims on the basis of an earlier game-theoretic experiment about the turn-taking game “Marble Drop with Surprising Opponent”, in which the opponent often starts with a seemingly irrational move. We explore two ways of segregating the participants into reasonable “player types”. The first way is based on latent class analysis, which divides the players into three classes according to their first decisions in the game: Random players, Learners, and Expected players, who make decisions consistent with forward induction. The second way is based on participants’ answers to a question about their opponent, classified according to levels of theory of mind: zero-order, first-order and second-order. It turns out that increasing levels of decisions and theory of mind both correspond to increasing success as measured by monetary awards and increasing decision times. Next, we use the logical language to express different kinds of strategies that people apply when reasoning about their opponent and making decisions in turn-taking games, as well as the ‘reasoning types’ reflected in their behavior. Then, we translate the logical formulas into computational cognitive models in the PRIMs architecture. Finally, we run two of the resulting models, corresponding to the strategy of only being interested in one’s own payoff and to the myopic strategy, in which one can only look ahead to a limited number of nodes. It turns out that the participant data fit to the own-payoff strategy, not the myopic one. The article closes the circle from experiments via logic and cognitive modelling back to predictions about new experiments

    Distracting the Mind Improves Performance: An ERP Study

    Get PDF
    When a second target (T2) is presented in close succession of a first target (T1), people often fail to identify T2, a phenomenon known as the attentional blink (AB). However, the AB can be reduced substantially when participants are distracted during the task, for instance by a concurrent task, without a cost for T1 performance. The goal of the current study was to investigate the electrophysiological correlates of this paradoxical effect.Participants successively performed three tasks, while EEG was recorded. The first task (standard AB) consisted of identifying two target letters in a sequential stream of distractor digits. The second task (grey dots task) was similar to the first task with the addition of an irrelevant grey dot moving in the periphery, concurrent with the central stimulus stream. The third task (red dot task) was similar to the second task, except that detection of an occasional brief color change in the moving grey dot was required. AB magnitude in the latter task was significantly smaller, whereas behavioral performance in the standard and grey dots tasks did not differ. Using mixed effects models, electrophysiological activity was compared during trials in the grey dots and red dot tasks that differed in task instruction but not in perceptual input. In the red dot task, both target-related parietal brain activity associated with working memory updating (P3) as well as distractor-related occipital activity was significantly reduced.The results support the idea that the AB might (at least partly) arise from an overinvestment of attentional resources or an overexertion of attentional control, which is reduced when a distracting secondary task is carried out. The present findings bring us a step closer in understanding why and how an AB occurs, and how these temporal restrictions in selective attention can be overcome

    Differential effects of exogenous and endogenous cueing in multi-stream RSVP: implications for theories of attentional blink

    Get PDF
    The attentional blink (AB) refers to the finding that performance on the second of two targets (T1 and T2) in a rapid serial visual presentation (RSVP) stream is impaired when the targets are presented within 200–500 ms. To explore the possible interaction between spatial attentional orienting and temporary attentional deficits, this study used central (endogenous) and peripheral (exogenous) cues in a multi-stream RSVP task and compared the endogenous and exogenous cueing effects inside and outside of the AB period. While the endogenous cueing effect was constant in magnitude over time, the exogenous cueing effect was significantly larger inside than outside of the AB period. Theoretical implications of these findings for the interaction between attention mechanisms in spatial and temporal domains are discussed

    Restricted Attentional Capacity within but Not between Sensory Modalities: An Individual Differences Approach

    Get PDF
    Background Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional blink (AB). An aspect of the AB that is often ignored is that there are large individual differences in the magnitude of the effect. Here we exploit these individual differences to address a long-standing question: does attention to a visual target come at a cost for attention to an auditory target (and vice versa)? More specifically, the goal of the current study was to investigate a) whether individuals with a large within-modality AB also show a large cross-modal AB, and b) whether individual differences in AB magnitude within different modalities correlate or are completely separate. Methodology/Principal Findings While minimizing differential task difficulty and chances for a task-switch to occur, a significant AB was observed when targets were both presented within the auditory or visual modality, and a positive correlation was found between individual within-modality AB magnitudes. However, neither a cross-modal AB nor a correlation between cross-modal and within-modality AB magnitudes was found. Conclusion/Significance The results provide strong evidence that a major source of attentional restriction must lie in modality-specific sensory systems rather than a central amodal system, effectively settling a long-standing debate. Individuals with a large within-modality AB may be especially committed or focused in their processing of the first target, and to some extent that tendency to focus could cross modalities, reflected in the within-modality correlation. However, what they are focusing (resource allocation, blocking of processing) is strictly within-modality as it only affects the second target on within-modality trials. The findings show that individual differences in AB magnitude can provide important information about the modular structure of human cognition

    Quick Minds Slowed Down: Effects of Rotation and Stimulus Category on the Attentional Blink

    Get PDF
    BACKGROUND: Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional restriction known as the 'attentional blink' (AB). However, there are large individual differences in the magnitude of the effect, with some people showing no such attentional restrictions. METHODOLOGY/PRINCIPAL FINDINGS: Here we present behavioral and electrophysiological evidence suggesting that these 'non-blinkers' can use alphanumeric category information to select targets at an early processing stage. When such information was unavailable and target selection could only be based on information that is processed relatively late (rotation), even non-blinkers show a substantial AB. Electrophysiologically, in non-blinkers this resulted in enhanced distractor-related prefrontal brain activity, as well as delayed target-related occipito-parietal activity (P3). CONCLUSION/SIGNIFICANCE: These findings shed new light on possible strategic mechanisms that may underlie individual differences in AB magnitude and provide intriguing clues as to how temporal restrictions as reflected in the AB can be overcome
    corecore