30,271 research outputs found
Similarity Solutions for Boundary Layer Flows on a Moving Surface in Non-Newtonian Power-Law Fluids
A similarity analysis of the boundary layer flow caused by the motion of a semi-infinite flat sulface in a non-Newtonian power-law fluid at rest is made in this paper. These similar solutions fall into two categories: similarity solutions corresponding to steady boundary layers over moving surfaces and similarity solutions corresponding to unsteady boundary layers past moving flat surfaces, respectively. Except in the special case n = 1/2 (pseudoplastic) and n = 1 (Newtonian) fluids, solutions of the first category problems must be obtainednumerically. However, for the second category analytical solutions are possible for a large class of pseudoplasticfluids (n < 1), including the case of a Newtonianfluid (n = 1)
Verifying Policy Enforcers
Policy enforcers are sophisticated runtime components that can prevent
failures by enforcing the correct behavior of the software. While a single
enforcer can be easily designed focusing only on the behavior of the
application that must be monitored, the effect of multiple enforcers that
enforce different policies might be hard to predict. So far, mechanisms to
resolve interferences between enforcers have been based on priority mechanisms
and heuristics. Although these methods provide a mechanism to take decisions
when multiple enforcers try to affect the execution at a same time, they do not
guarantee the lack of interference on the global behavior of the system. In
this paper we present a verification strategy that can be exploited to discover
interferences between sets of enforcers and thus safely identify a-priori the
enforcers that can co-exist at run-time. In our evaluation, we experimented our
verification method with several policy enforcers for Android and discovered
some incompatibilities.Comment: Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yli\`es
Falcone. Verifying Policy Enforcers. Proceedings of 17th International
Conference on Runtime Verification (RV), 2017. (to appear
Antisense oligonucleotide: A potential therapeutic intervention for chronic kidney disease
Chronic kidney disease (CKD) is a global public health issue that places an increasing burden on the healthcare systems of both the developed and developing countries. CKD is a progressive and irreversible condition, affecting approximately 10% of the population worldwide. Patients that have progressed to end-stage renal disease (ESRD) require expensive renal replacement therapy, i.e., dialysis or kidney transplantation. Current CKD therapy largely relies on the use of angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs). However, these treatments by no means halt the progression of CKD to ESRD. Therefore, the development of new therapies is urgently needed. Antisense oligonucleotide (ASO) has recently attracted considerable interest as a drug development platform. Thus far, eight ASO-based drugs have been granted approval by the US Food and Drug Administration for the treatment of various diseases. Herein, we review the ASOs developed for the identification of CKD-relevant genes and/or the simultaneous development of the ASOs as potential therapeutics towards treating CKD
Charmed-Baryon Spectroscopy from Lattice QCD with N_f=2+1+1 Flavors
We present the results of a calculation of the positive-parity ground-state
charmed-baryon spectrum using 2+1+1 flavors of dynamical quarks. The
calculation uses a relativistic heavy-quark action for the valence charm quark,
clover-Wilson fermions for the valence light and strange quarks, and HISQ sea
quarks. The spectrum is calculated with a lightest pion mass around 220 MeV,
and three lattice spacings (a \approx 0.12 fm, 0.09 fm, and 0.06 fm) are used
to extrapolate to the continuum. The light-quark mass extrapolation is
performed using heavy-hadron chiral perturbation theory up to O(m_pi^3) and at
next-to-leading order in the heavy-quark mass. For the well-measured charmed
baryons, our results show consistency with the experimental values. For the
controversial J=1/2 Xi_{cc}, we obtain the isospin-averaged value
M_{Xi_{cc}}=3595(39)(20)(6) MeV (the three uncertainties are statistics,
fitting-window systematic, and systematics from other lattice artifacts, such
as lattice scale setting and pion-mass determination), which shows a 1.7 sigma
deviation from the experimental value. We predict the yet-to-be-discovered
doubly and triply charmed baryons Xi_{cc}^*, Omega_{cc}, Omega_{cc}^* and
Omega_{ccc} to have masses 3648(42)(18)(7) MeV, 3679(40)(17)(5) MeV,
3765(43)(17)(5) MeV and 4761(52)(21)(6) MeV, respectively.Comment: 23 pages, 14 figure
\Omega-deformation of B-twisted gauge theories and the 3d-3d correspondence
We study \Omega-deformation of B-twisted gauge theories in two dimensions. As
an application, we construct an \Omega-deformed, topologically twisted
five-dimensional maximally supersymmetric Yang-Mills theory on the product of a
Riemann surface and a three-manifold , and show that when
is a disk, this theory is equivalent to analytically continued Chern-Simons
theory on . Based on these results, we establish a correspondence between
three-dimensional superconformal theories and analytically
continued Chern-Simons theory. Furthermore, we argue that there is a mirror
symmetry between {\Omega}-deformed two-dimensional theories.Comment: 26 pages. v2: the discussion on the boundary condition for vector
multiplet improved, and other minor changes mad
A Prediction of the B*_c mass in full lattice QCD
By using the Highly Improved Staggered Quark formalism to handle charm,
strange and light valence quarks in full lattice QCD, and NRQCD to handle
bottom valence quarks we are able to determine accurately ratios of the B meson
vector-pseudoscalar mass splittings, in particular,
(m(B*_c)-m(B_c))/(m(B*_s)-m(B_s)). We find this ratio to be 1.15(15), showing
the `light' quark mass dependence of this splitting to be very small. Hence we
predict m(B_c*) = 6.330(7)(2)(6) GeV where the first two errors are from the
lattice calculation and the third from existing experiment. This is the most
accurate prediction of a gold-plated hadron mass from lattice QCD to date.Comment: 4 pages, 2 figure
A consistent picture for large penguins in D -> pi+ pi-, K+ K-
A long-standing puzzle in charm physics is the large difference between the
D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF
collaborations reported a surprisingly large difference between the direct CP
asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are
naturally related in the Standard Model via s- and d-quark "penguin
contractions". Their sum gives rise to Delta A_CP, while their difference
contributes to the two branching ratios with opposite sign. Assuming nominal
SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay
rates yields large penguin contractions that naturally explain Delta A_CP.
Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure
Dynamics of a deformable self-propelled particle under external forcing
We investigate dynamics of a self-propelled deformable particle under
external field in two dimensions based on the model equations for the center of
mass and a tensor variable characterizing deformations. We consider two kinds
of external force. One is a gravitational-like force which enters additively in
the time-evolution equation for the center of mass. The other is an
electric-like force supposing that a dipole moment is induced in the particle.
This force is added to the equation for the deformation tensor. It is shown
that a rich variety of dynamics appears by changing the strength of the forces
and the migration velocity of self-propelled particle
Visualizing the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator
Superconductivity emerges from the cuprate antiferromagnetic Mott state with
hole doping. The resulting electronic structure is not understood, although
changes in the state of oxygen atoms appear paramount. Hole doping first
destroys the Mott state yielding a weak insulator where electrons localize only
at low temperatures without a full energy gap. At higher doping, the
'pseudogap', a weakly conducting state with an anisotropic energy gap and
intra-unit-cell breaking of 90\degree-rotational (C4v) symmetry appears.
However, a direct visualization of the emergence of these phenomena with
increasing hole density has never been achieved. Here we report atomic-scale
imaging of electronic structure evolution from the weak-insulator through the
emergence of the pseudogap to the superconducting state in Ca2-xNaxCuO2Cl2. The
spectral signature of the pseudogap emerges at lowest doping from a weakly
insulating but C4v-symmetric matrix exhibiting a distinct spectral shape. At
slightly higher hole-density, nanoscale regions exhibiting pseudogap spectra
and 180\degree-rotational (C2v) symmetry form unidirectional clusters within
the C4v-symmetric matrix. Thus, hole-doping proceeds by the appearance of
nanoscale clusters of localized holes within which the broken-symmetry
pseudogap state is stabilized. A fundamentally two-component electronic
structure11 then exists in Ca2-xNaxCuO2Cl2 until the C2v-symmetric clusters
touch at higher doping, and the long-range superconductivity appears.Comment: See the Nature Physics website for the published version available at
http://dx.doi.org/10.1038/Nphys232
- …