369 research outputs found

    Blood Glucose Levels Regulate Pancreatic Ξ²-Cell Proliferation during Experimentally-Induced and Spontaneous Autoimmune Diabetes in Mice

    Get PDF
    Type 1 diabetes mellitus is caused by immune-mediated destruction of pancreatic beta-cells leading to insulin deficiency, impaired intermediary metabolism, and elevated blood glucose concentrations. While at autoimmune diabetes onset a limited number of beta-cells persist, the cells' regenerative potential and its regulation have remained largely unexplored. Using two mouse autoimmune diabetes models, this study examined the proliferation of pancreatic islet ss-cells and other endocrine and non-endocrine subsets, and the factors regulating that proliferation.We adapted multi-parameter flow cytometry techniques (including DNA-content measurements and 5'-bromo-2'-deoxyuridine [BrdU] incorporation) to study pancreatic islet single cell suspensions. These studies demonstrate that beta-cell proliferation rapidly increases at diabetes onset, and that this proliferation is closely correlated with the diabetic animals' elevated blood glucose levels. For instance, we show that when normoglycemia is restored by exogenous insulin or islet transplantation, the beta-cell proliferation rate returns towards low levels found in control animals, yet surges when hyperglycemia recurs. In contrast, other-than-ss endocrine islet cells did not exhibit the same glucose-dependent proliferative responses. Rather, disease-associated alterations of BrdU-incorporation rates of delta-cells (minor decrease), and non-endocrine islet cells (slight increase) were not affected by blood glucose levels, or were inversely related to glycemia control after diabetes onset (alpha-cells).We conclude that murine beta-cells' ability to proliferate in response to metabolic need (i.e. rising blood glucose concentrations) is remarkably well preserved during severe, chronic beta-cell autoimmunity. These data suggest that timely control of the destructive immune response after disease manifestation could allow spontaneous regeneration of sufficient beta-cell mass to restore normal glucose homeostasis

    DNA Fragmentation Simulation Method (FSM) and Fragment Size Matching Improve aCGH Performance of FFPE Tissues

    Get PDF
    Whole-genome copy number analysis platforms, such as array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) arrays, are transformative research discovery tools. In cancer, the identification of genomic aberrations with these approaches has generated important diagnostic and prognostic markers, and critical therapeutic targets. While robust for basic research studies, reliable whole-genome copy number analysis has been unsuccessful in routine clinical practice due to a number of technical limitations. Most important, aCGH results have been suboptimal because of the poor integrity of DNA derived from formalin-fixed paraffin-embedded (FFPE) tissues. Using self-hybridizations of a single DNA sample we observed that aCGH performance is significantly improved by accurate DNA size determination and the matching of test and reference DNA samples so that both possess similar fragment sizes. Based on this observation, we developed a novel DNA fragmentation simulation method (FSM) that allows customized tailoring of the fragment sizes of test and reference samples, thereby lowering array failure rates. To validate our methods, we combined FSM with Universal Linkage System (ULS) labeling to study a cohort of 200 tumor samples using Agilent 1 M feature arrays. Results from FFPE samples were equivalent to results from fresh samples and those available through the glioblastoma Cancer Genome Atlas (TCGA). This study demonstrates that rigorous control of DNA fragment size improves aCGH performance. This methodological advance will permit the routine analysis of FFPE tumor samples for clinical trials and in daily clinical practice

    Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hematopoietic stem cell transplantation is increasingly performed for hematologic diseases. As a major side effect, acute graft versus host disease (GvHD) with serious gastrointestinal symptoms including diarrhea, gastrointestinal bleeding and high mortality can be observed. Because surveillance and biopsies of human gastrointestinal GvHD are difficult to perform, rare information of the alterations of the gastrointestinal barrier exists resulting in a need for systematic animal models.</p> <p>Methods</p> <p>To investigate the effects of GvHD on the intestinal barrier of the small intestine we utilized an established acute semi allogenic GvHD in C57BL/6 and B6D2F1 mice.</p> <p>Results</p> <p>By assessing the differential uptake of lactulose and mannitol in the jejunum, we observed an increased paracellular permeability as a likely mechanism for disturbed intestinal barrier function. Electron microscopy, immunohistochemistry and PCR analysis indicated profound changes of the tight-junction complex, characterized by downregulation of the tight junction protein occludin without any changes in ZO-1. Furthermore TNF-Ξ± expression was significantly upregulated.</p> <p>Conclusions</p> <p>This analysis in a murine model of GvHD of the small intestine demonstrates serious impairment of intestinal barrier function in the jejunum, with an increased permeability and morphological changes through downregulation and localization shift of the tight junction protein occludin.</p

    Safety and Reactogenicity of Canarypox ALVAC-HIV (vCP1521) and HIV-1 gp120 AIDSVAX B/E Vaccination in an Efficacy Trial in Thailand

    Get PDF
    A prime-boost vaccination regimen with ALVAC-HIV (vCP1521) administered intramuscularly at 0, 4, 12, and 24 weeks and gp120 AIDSVAX B/E at 12 and 24 weeks demonstrated modest efficacy of 31.2% for prevention of HIV acquisition in HIV-uninfected adults participating in a community-based efficacy trial in Thailand.Reactogenicity was recorded for 3 days following vaccination. Adverse events were monitored every 6 months for 3.5 years, during which pregnancy outcomes were recorded. Of the 16,402 volunteers, 69% of the participants reported an adverse event any time after the first dose. Only 32.9% experienced an AE within 30 days following any vaccination. Overall adverse event rates and attribution of relatedness did not differ between groups. The frequency of serious adverse events was similar in vaccine (14.3%) and placebo (14.9%) recipients (pβ€Š=β€Š0.33). None of the 160 deaths (85 in vaccine and 75 in placebo recipients, pβ€Š=β€Š0.43) was assessed as related to vaccine. The most common cause of death was trauma or traffic accident. Approximately 30% of female participants reported a pregnancy during the study. Abnormal pregnancy outcomes were experienced in 17.1% of vaccine and 14.6% (pβ€Š=β€Š0.13) of placebo recipients. When the conception occurred within 3 months (estimated) of a vaccination, the majority of these abnormal outcomes were spontaneous or elective abortions among 22.2% and 15.3% of vaccine and placebo pregnant recipients, respectively (pβ€Š=β€Š0.08). Local reactions occurred in 88.0% of vaccine and 61.0% of placebo recipients (p<0.001) and were more frequent after ALVAC-HIV than AIDSVAX B/E vaccination. Systemic reactions were more frequent in vaccine than placebo recipients (77.2% vs. 59.8%, p<0.001). Local and systemic reactions were mostly mild to moderate, resolving within 3 days.The ALVAC-HIV and AIDSVAX B/E vaccine regimen was found to be safe, well tolerated and suitable for potential large-scale use in Thailand.ClinicalTrials.govNCT00223080

    Transgenic Overexpression of Active Calcineurin in Ξ²-Cells Results in Decreased Ξ²-Cell Mass and Hyperglycemia

    Get PDF
    BACKGROUND:Glucose modulates beta-cell mass and function through an initial depolarization and Ca(2+) influx, which then triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca(2+) signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that calcineurin/NFAT is essential for beta-cell proliferation, and that in its absence loss of beta-cells results in diabetes. We hypothesized that in contrast, activation of calcineurin might result in expansion of beta-cell mass and resistance to diabetes. METHODOLOGY/PRINCIPAL FINDINGS:To determine the role of activation of calcineurin signaling in the regulation of pancreatic beta-cell mass and proliferation, we created mice that expressed a constitutively active form of calcineurin under the insulin gene promoter (caCn(RIP)). To our surprise, these mice exhibited glucose intolerance. In vitro studies demonstrated that while the second phase of Insulin secretion is enhanced, the overall insulin secretory response was conserved. Islet morphometric studies demonstrated decreased beta-cell mass suggesting that this was a major component responsible for altered Insulin secretion and glucose intolerance in caCn(RIP) mice. The reduced beta-cell mass was accompanied by decreased proliferation and enhanced apoptosis. CONCLUSIONS:Our studies identify calcineurin as an important factor in controlling glucose homeostasis and indicate that chronic depolarization leading to increased calcineurin activity may contribute, along with other genetic and environmental factors, to beta-cell dysfunction and diabetes

    Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B

    Get PDF
    The present study aimed to elucidate the cell death mechanism in Leishmania donovani upon treatment with KalsomeTM10, a new liposomal amphotericin B. Methodology/Principal findings We studied morphological alterations in promastigotes through phase contrast and scanning electron microscopy. Phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and disruption of mitochondrial integrity was determined by flow cytometry using annexinV-FITC, JC-1 and mitotraker, respectively. For analysing oxidative stress, generation of H2O2 (bioluminescence kit) and mitochondrial superoxide O2 βˆ’ (mitosox) were measured. DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase mediated dUTP nick-end labelling (TUNEL) and DNA laddering assay. We found that KalsomeTM10 is more effective then Ambisome against the promastigote as well as intracellular amastigote forms. The mechanistic study showed that KalsomeTM10 induced several morphological alterations in promastigotes typical of apoptosis. KalsomeTM10 treatment showed a dose- and time-dependent exposure of PS in promastigotes. Further,study on mitochondrial pathway revealed loss of mitochondrial membrane potential as well as disruption in mitochondrial integrity with depletion of intracellular pool of ATP. KalsomeTM10 treated promastigotes showed increased ROS production, diminished GSH levels and increased caspase-like activity. DNA fragmentation and cell cycle arrest was observed in KalsomeTM10 treated promastigotes. Apoptotic DNA fragmentation was also observed in KalsomeTM10 treated intracellular amastigotes. KalsomeTM10 induced generation of ROS and nitric oxide leads to the killing of the intracellular parasites. Moreover, endocytosis is indispensable for KalsomeTM10 mediated anti-leishmanial effect in host macrophag

    Generalised Anxiety Disorder – A Twin Study of Genetic Architecture, Genome-Wide Association and Differential Gene Expression

    Get PDF
    Generalised Anxiety Disorder (GAD) is a common anxiety-related diagnosis, affecting approximately 5% of the adult population. One characteristic of GAD is a high degree of anxiety sensitivity (AS), a personality trait which describes the fear of arousal-related sensations. Here we present a genome-wide association study of AS using a cohort of 730 MZ and DZ female twins. The GWAS showed a significant association for a variant within the RBFOX1 gene. A heritability analysis of the same cohort also confirmed a significant genetic component with h2 of 0.42. Additionally, a subset of the cohort (25 MZ twins discordant for AS) was studied for evidence of differential expression using RNA-seq data. Significant differential expression of two exons with the ITM2B gene within the discordant MZ subset was observed, a finding that was replicated in an independent cohort. While previous research has shown that anxiety has a high comorbidity with a variety of psychiatric and neurodegenerative disorders, our analysis suggests a novel etiology specific to AS
    • …
    corecore