12 research outputs found

    An Integrated Meta-Analysis of Two Variants in HOXA1/HOXB1 and Their Effect on the Risk of Autism Spectrum Disorders

    Get PDF
    BACKGROUND: HOXA1 and HOXB1 have been strongly posed as candidate genes for autism spectrum disorders (ASD) given their important role in the development of hindbrain. The A218G (rs10951154) in HOXA1 and the insertion variant in HOXB1 (nINS/INS, rs72338773) were of special interest for ASD but with inconclusive results. Thus, we conducted a meta-analysis integrating case-control and transmission/disequilibrium test (TDT) studies to clearly discern the effect of these two variants in ASD. METHODS AND FINDINGS: Multiple electronic databases were searched to identify studies assessing the A218G and/or nINS/INS variant in ASD. Data from case-control and TDT studies were analyzed in an allelic model using the Catmap software. A total of 10 and 7 reports were found to be eligible for meta-analyses of A218G and nINS/INS variant, respectively. In overall meta-analysis, the pooled OR for the 218G allele and the INS allele was 0.97 (95% CI = 0.76-1.25, P(heterogeneity) = 0.029) and 1.14 (95% CI = 0.97-1.33, P(heterogeneity) = 0.269), respectively. No significant association was also identified between these two variants and ASD risk in stratified analysis. Further, cumulative meta-analysis in chronologic order showed the inclination toward null-significant association for both variants with continual adding studies. Additionally, although the between-study heterogeneity regarding the A218G is not explained by study design, ethnicity, and sample size, the sensitive analysis indicated the stability of the result. CONCLUSIONS: This meta-analysis suggests the HOXA1 A218G and HOXB1 nINS/INS variants may not contribute significantly to ASD risk

    A Common SMAD7 Variant Is Associated with Risk of Colorectal Cancer: Evidence from a Case-Control Study and a Meta-Analysis

    Get PDF
    <div><h3>Background</h3><p>A common genetic variant, rs4939827, located in <em>SMAD7</em>, was identified by two recent genome-wide association (GWA) studies to be strongly associated with the risk of colorectal cancer (CRC). However, the following replication studies yielded conflicting results.</p> <h3>Method and Findings</h3><p>We conducted a case-control study of 641 cases and 1037 controls in a Chinese population and then performed a meta-analysis, integrating our and published data of 34313 cases and 33251 controls, to clarify the relationship between rs4939827 and CRC risk. In our case-control study, the dominant model was significant associated with increased CRC risk [Odds Ratio (OR) = 1.46; 95% confidence interval (95% CI), 1.19–1.80]. The following meta-analysis further confirmed this significant association for all genetic models but with significant between-study heterogeneity (all <em>P</em> for heterogeneity <0.1). By stratified analysis, we revealed that ethnicity, sample size, and tumor sites might constitute the source of heterogeneity. The cumulative analysis suggested that evident tendency to significant association was seen with adding study samples over time; whilst, sensitive analysis showed results before and after removal of each study were similar, indicating the highly stability of the current results.</p> <h3>Conclusion</h3><p>Results from our case-control study and the meta-analysis collectively confirmed the significant association of the variant rs4939827 with increased risk of colorectal cancer. Nevertheless, fine-mapping of the susceptibility loci defined by rs4939287 should be imposed to reveal causal variant.</p> </div

    Combined effect of CCND1 and COMT polymorphisms and increased breast cancer risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estrogens are crucial tumorigenic hormones, which impact the cell growth and proliferation during breast cancer development. Estrogens are metabolized by a series of enzymes including COMT, which converts catechol estrogens into biologically non-hazardous methoxyestrogens. Several studies have also shown the relationship between estrogen and cell cycle progression through activation of CCND1 transcription.</p> <p>Methods</p> <p>In this study, we have investigated the independent and the combined effects of commonly occurring CCND1 (Pro241Pro, A870G) and COMT (Met108/158Val) polymorphisms to breast cancer risk in two independent Caucasian populations from Ontario (1228 breast cancer cases and 719 population controls) and Finland (728 breast cancer cases and 687 population controls). Both COMT and CCND1 polymorphisms have been previously shown to impact on the enzymatic activity of the coded proteins.</p> <p>Results</p> <p>Here, we have shown that the high enzymatic activity genotype of CCND1<sup>High </sup>(AA) was associated with increased breast cancer risk in both the Ontario [OR: 1.3, 95%CI (1.0–1.69)] and the Finland sample [OR: 1.4, 95%CI (1.01–1.84)]. The heterozygous COMT<sup>Medium </sup>(MetVal) and the high enzymatic activity of COMT<sup>High </sup>(ValVal) genotype was also associated with breast cancer risk in Ontario cases, [OR: 1.3, 95%CI (1.07–1.68)] and [OR: 1.4, 95%CI (1.07–1.81)], respectively. However, there was neither a statistically significant association nor increased trend of breast cancer risk with COMT<sup>High </sup>(ValVal) genotypes in the Finland cases [OR: 1.0, 95%CI (0.73–1.39)]. In the combined analysis, the higher activity alleles of the COMT and CCND1 is associated with increased breast cancer risk in both Ontario [OR: <b>2.22</b>, 95%CI (1.49–3.28)] and Finland [OR: <b>1.73</b>, 95%CI (1.08–2.78)] populations studied. The trend test was statistically significant in both the Ontario and Finland populations across the genotypes associated with increasing enzymatic activity.</p> <p>Conclusion</p> <p>Using two independent Caucasian populations, we have shown a stronger combined effect of the two commonly occurring CCND1 and COMT genotypes in the context of breast cancer predisposition.</p
    corecore