18 research outputs found

    Giant magnetoresistance of Dirac plasma in high-mobility graphene

    Full text link
    The most recognizable feature of graphene's electronic spectrum is its Dirac point around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behavior in this regime is often obscured by charge inhomogeneity but thermal excitations can overcome the disorder at elevated temperatures and create electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties including quantum critical scattering and hydrodynamic flow. However, little is known about the plasma's behavior in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching >100% in 0.1 T even at room temperature. This is orders of magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behavior is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian-limit) scattering. With the onset of Landau quantization in a few T, where the electron-hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening, indicating a many-body origin. Clear parallels with magnetotransport in strange metals and so-called quantum linear magnetoresistance predicted for Weyl metals offer an interesting playground to further explore relevant physics using this well-defined quantum-critical 2D system.Comment: 8 pages, 3 figure

    Long-range ballistic transport of Brown-Zak fermions in graphene superlattices

    Get PDF
    In quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often referred to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that arise from quantization of Brown-Zak minibands recurring at rational (p/q) fractions of the magnetic flux quantum per superlattice unit cell. Here we show that, in graphene-on-boron-nitride superlattices, Brown-Zak fermions can exhibit mobilities above 106 cm2 V−1 s−1 and the mean free path exceeding several micrometers. The exceptional quality of our devices allows us to show that Brown-Zak minibands are 4q times degenerate and all the degeneracies (spin, valley and mini-valley) can be lifted by exchange interactions below 1 K. We also found negative bend resistance at 1/q fractions for electrical probes placed as far as several micrometers apart. The latter observation highlights the fact that Brown-Zak fermions are Bloch quasiparticles propagating in high fields along straight trajectories, just like electrons in zero field

    One-dimensional proximity superconductivity in the quantum Hall regime

    Get PDF
    Extensive efforts have been undertaken to combine superconductivity and the quantum Hall effect so that Cooper-pair transport between superconducting electrodes in Josephson junctions is mediated by one-dimensional (1D) edge states. This interest has been motivated by prospects of finding new physics, including topologically-protected quasiparticles, but also extends into metrology and device applications. So far it has proven challenging to achieve detectable supercurrents through quantum Hall conductors. Here we show that domain walls in minimally twisted bilayer graphene support exceptionally robust proximity superconductivity in the quantum Hall regime, allowing Josephson junctions operational in fields close to the upper critical field of superconducting electrodes. The critical current is found to be non-oscillatory, practically unchanging over the entire range of quantizing fields, with its value being limited by the quantum conductance of ballistic strictly-1D electronic channels residing within the domain walls. The described system is unique in its ability to support Andreev bound states in high fields and offers many interesting directions for further exploration

    Influence of calcination temperature on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate as precursor

    Get PDF
    Effects of calcination temperatures varying from 400 to 1000°C on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in the sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate (THEOS) as water-soluble silica precursor have been investigated. Studies carried out using XRD, FT-IR, TEM, STA (TG-DTG-DTA) and VSM techniques. Results indicated that magnetic properties of samples such as superparamagnetism and ferromagnetism showed great dependence on the variation of the crystallinity and particle size caused by the calcination temperature. The crystallization, saturation magnetization Ms and remenant magnetization Mr increased as the calcination temperature increased. But the variation of coercivity Hc was not in accordance with that of Ms and Mr, indicating that Hc is not determined only by the crystallinity and size of CoFe2O4 nanoparticles. TEM images showed spherical nanoparticles dispersed in the silica network with sizes of 10-30 nm. Results showed that the well-established silica network provided nucleation locations for CoFe2O4 nanoparticles to confinement the coarsening and aggregation of nanoparticles. THEOS as silica matrix network provides an ideal nucleation environment to disperse CoFe2O4 nanoparticles and thus to confine them to aggregate and coarsen. By using THEOS as water-soluble silica precursor over the currently used TEOS and TMOS, the organic solvents are not needed owing to the complete solubility of THEOS in water. Synthesized nanocomposites with adjustable particle sizes and controllable magnetic properties make the applicability of Co-ferrite even more versatile

    VeriStrat® has a prognostic value for patients with advanced non-small cell lung cancer treated with erlotinib and bevacizumab in the first line: pooled analysis of SAKK19/05 and NTR528

    Full text link
    BACKGROUND: VeriStrat(®) is a serum proteomic test used to determine whether patients with advanced non-small cell lung cancer (NSCLC) who have already received chemotherapy are likely to have good or poor outcomes from treatment with gefitinib or erlotinib. The main objective of our retrospective study was to evaluate the role of VS as a marker of overall survival (OS) in patients treated with erlotinib and bevacizumab in the first line. PATIENTS AND METHODS: Patients were pooled from two phase II trials (SAKK19/05 and NTR528). For survival analyses, a log-rank test was used to determine if there was a statistically significant difference between groups. The hazard ratio (HR) of any separation was assessed using Cox proportional hazards models. RESULTS: 117 patients were analyzed. VeriStrat classified patients into two groups which had a statistically significant difference in duration of OS (p = 0.0027, HR = 0.480, 95% confidence interval: 0.294-0.784). CONCLUSION: VeriStrat has a prognostic role in patients with advanced, nonsquamous NSCLC treated with erlotinib and bevacizumab in the first line. Further work is needed to study the predictive role of VeriStrat for erlotinib and bevacizumab in chemotherapy-untreated patients

    One-dimensional proximity superconductivity in the quantum Hall regime

    No full text
    Extensive efforts have been undertaken to combine superconductivity and the quantum Hall effect so that Cooper-pair transport between superconducting electrodes in Josephson junctions is mediated by one-dimensional (1D) edge states1–6. This interest has been motivated by prospects of finding new physics, including topologically-protected quasiparticles7–9, but also extends into metrology and device applications10–13. So far it has proven challenging to achieve detectable supercurrents through quantum Hall conductors2,3,6. Here we show that domain walls in minimally twisted bilayer graphene14–18 support exceptionally robust proximity superconductivity in the quantum Hall regime, allowing Josephson junctions operational in fields close to the upper critical field of superconducting electrodes. The critical current is found to be non-oscillatory, practically unchanging over the entire range of quantizing fields, with its value being limited by the quantum conductance of ballistic strictly-1D electronic channels residing within the domain walls. The described system is unique in its ability to support Andreev bound states in high fields and offers many interesting directions for further exploration

    Out-of-equilibrium criticalities in graphene superlattices

    No full text
    In thermodynamic equilibrium, current in metallic systems is carried by electronic states near the Fermi energy, whereas the filled bands underneath contribute little to conduction. Here, we describe a very different regime in which carrier distribution in graphene and its superlattices is shifted so far from equilibrium that the filled bands start playing an essential role, leading to a critical-current behavior. The criticalities develop upon the velocity of electron flow reaching the Fermi velocity. Key signatures of the out-of-equilibrium state are current-voltage characteristics that resemble those of superconductors, sharp peaks in differential resistance, sign reversal of the Hall effect, and a marked anomaly caused by the Schwinger-like production of hot electron-hole plasma. The observed behavior is expected to be common to all graphene-based superlattices
    corecore