4 research outputs found

    Hyperfine splitting in heavy ions with the nuclear magnetization distribution determined from experiments on muonic atoms

    Full text link
    The hyperfine splitting in hydrogenlike 209^{209}Bi, 203^{203}Tl, and 205^{205}Tl is calculated with the nuclear magnetization determined from experimental data on the hyperfine splitting in the corresponding muonic atoms. The single-particle and configuration-mixing nuclear models are considered. The QED corrections are taken into account for both electronic and muonic atoms. The obtained results are compared with other calculations and with experiment.Comment: 8 pages, 5 tables, accepted for publication in Nuclear Instruments and Methods in Physics Research

    Radiative and interelectronic-interaction corrections to the hyperfine splitting in highly charged B-like ions

    Full text link
    The ground-state hyperfine splitting values of high-Z boronlike ions are calculated. Calculation of the interelectronic-interaction contribution is based on a combination of the 1/Z perturbation theory and the large-scale configuration-interaction Dirac-Fock-Sturm method. The screened QED corrections are evaluated utilizing an effective screening potential approach. Total hyperfine splitting energies are presented for several B-like ions of particular interest: {}^{45}Sc{}^{16+}, {}^{57}Fe{}^{21+}, {}^{207}Pb{}^{77+}, and {}^{209}Bi{}^{78+}. For lead and bismuth the experimental values of the 1s hyperfine splitting are employed to improve significantly the theoretical results by reducing the uncertainty due to the nuclear effects.Comment: 12 pages, 2 figures, 3 table

    QED Effects in Heavy Few-Electron Ions

    Full text link
    Accurate calculations of the binding energies, the hyperfine splitting, the bound-electron g-factor, and the parity nonconservation effects in heavy few-electron ions are considered. The calculations include the relativistic, quantum electrodynamic (QED), electron-correlation, and nuclear effects. The theoretical results are compared with available experimental data. A special attention is focused on tests of QED in a strong Coulomb field.Comment: 28 pages, 6 tables, 5 figure
    corecore