13 research outputs found

    Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo2 yAs2

    Get PDF
    The compound EuCo{2-y}As2 with the tetragonal ThCr2Si2 structure is known to contain Eu{+2} ions with spin S = 7/2 that order below a temperature TN = 47 K into an antiferromagnetic (AFM) proper helical structure with the ordered moments aligned in the tetragonal ab plane, perpendicular to the helix axis along the c axis, with no contribution from the Co atoms. Here we carry out a detailed investigation of the properties of single crystals. Enhanced ordered and effective moments of the Eu spins are found in most of our crystals. Electronic structure calculations indicate that the enhanced moments arise from polarization of the d bands, as occurs in ferromagnetic Gd metal. Electrical resistivity measurements indicate metallic behavior. The low-field in-plane magnetic susceptibilities chi{ab}(T < TN) for several crystals are reported that are fitted well by unified molecular field theory (MFT), and the Eu-Eu exchange interactions Jij are extracted from the fits. High-field magnetization M data for magnetic fields H||ab reveal what appears to be a first-order spin-flop transition followed at higher field by a second-order metamagnetic transition of unknown origin, and then by another second-order transition to the paramagnetic (PM) state. For H||c, the magnetization shows only a second-order transition from the canted AFM to the PM state, as expected. The critical fields for the AFM to PM transition are in approximate agreement with the predictions of MFT. Heat capacity Cp measurements in zero and high H are reported. Phase diagrams for H||c and H||ab versus T are constructed from the high-field M(H,T) and Cp(H,T) measurements. The magnetic part Cmag(T, H = 0) of Cp(T, H = 0) is extracted and is fitted rather well below TN by MFT, although dynamic short-range AFM order is apparent in Cmag(T) up to about 70 K, where the molar entropy attains its high-T limit of R ln8.Comment: 29 pages, 30 figures including 62 subfigures, 8 tables, 84 reference

    Evolution of 2B and 2C genomic parts of species B Coxsackie viruses. Phylogenetic study and comparison with other regions

    No full text
    Modern molecular approaches on the genome of enteroviruses' circulating strains have established new data about the mechanism and significance of its evolution. In the present study, 46 enteroviruses isolates, belonging to HEV-B species and exhibiting distinct origin in geographical or chronological terms, were investigated concerning their primary structure and phylogeny. Two regions of the aforementioned strains genome, which have not been thoroughly investigated (2B and 5′ extreme of 2C) were amplified and sequenced for the first time. Phylogenetic and nucleotide analysis of the isolates' fragments, along with representative prototype sequences, demonstrate that the classification scheme of monophyly and accordance with the genotype, which characterizes VP1 region, is seriously disturbed. Moreover, the phylogenetic trees constructed from adjacent regions of the genome appear radically incongruent suggesting that the parameters that affect these portions are different or act in a different extent. Our study results an additional step in the study of enteroviruses evolution and inheritance, by investigating unstudied regions of newly sequenced strains and revealing that the primary structure and phylogeny of them is different not only comparably to the structural genome but also from one to another. © Springer Science+Buisness Media, Inc. 2006

    Vaccine derived bi- and multi-recombinant Sabin strains

    No full text
    A retrospective analysis of five Sabin intertypic recombinant strains, isolated from human feacal specimens during the time period 1978-1985 in Greece, was performed by RT-PCR, Restriction Fragment Length Polymorphism (R.F.L.P.) and sequencing. Of the studied strains, three (EPA, EPB, EPC) were found to be bi-recombinant Sabin3/Sabin2/Sabin3 (S3/S2/S3), one strain was characterized as a probable S3/S2- CAV18 or CAV21-S2/S1 multi-recombinant (EDP11) and one was identified as a tripartite one S3/S2/S1 (EDP12). Samples EPA, EPB and EPC presented a common recombination junction in the 2C genomic region. Moreover, strains EPA and EPB shared also the second recombination site in the 3D genomic region, whereas the second recombination of EPC was also determined in 3D but in a different nucleotide position. Strains EDP11 and EDP12 presented both identical recombination motifs and recombination sites. The first was detected in the 2C genomic region and the second in the 3D region. Strain EDP11 presented an interesting feature since a sequence of 120 nucleotides seems to have derived from a member of human enteroviruses species C (CAV18 or CAV21). This finding is of great importance, considering that this strain (EDP11) was isolated from an area and time period, where no Coxsackie A virus or poliovirus epidemics occurred. Our study underlines the role of specific positions and motifs of the poliovirus genomic sequences involved in recombination events and prompts that Coxsackie A viruses belonging to human enterovirus species C (genetically closely related to PV) are considered as the possible counterparts of the recombination. © 2007 Springer Science+Business Media, LLC

    Remdesivir for Severe Coronavirus Disease 2019 (COVID-19) Versus a Cohort Receiving Standard of Care

    No full text
    BACKGROUND: We compared the efficacy of the antiviral agent, remdesivir, versus standard-of-care treatment in adults with severe coronavirus disease 2019 (COVID-19) using data from a phase 3 remdesivir trial and a retrospective cohort of patients with severe COVID-19 treated with standard of care. METHODS: GS-US-540-5773 is an ongoing phase 3, randomized, open-label trial comparing two courses of remdesivir (remdesivir-cohort). GS-US-540-5807 is an ongoing real-world, retrospective cohort study of clinical outcomes in patients receiving standard-of-care treatment (non-remdesivir-cohort). Inclusion criteria were similar between studies: patients had confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, were hospitalized, had oxygen saturation ≤94% on room air or required supplemental oxygen, and had pulmonary infiltrates. Stabilized inverse probability of treatment weighted multivariable logistic regression was used to estimate the treatment effect of remdesivir versus standard of care. The primary endpoint was the proportion of patients with recovery on day 14, dichotomized from a 7-point clinical status ordinal scale. A key secondary endpoint was mortality. RESULTS: After the inverse probability of treatment weighting procedure, 312 and 818 patients were counted in the remdesivir- and non-remdesivir-cohorts, respectively. At day 14, 74.4% of patients in the remdesivir-cohort had recovered versus 59.0% in the non-remdesivir-cohort (adjusted odds ratio [aOR] 2.03: 95% confidence interval [CI]: 1.34-3.08, P < .001). At day 14, 7.6% of patients in the remdesivir-cohort had died versus 12.5% in the non-remdesivir-cohort (aOR 0.38, 95% CI: 22-.68, P = .001). CONCLUSIONS: In this comparative analysis, by day 14, remdesivir was associated with significantly greater recovery and 62% reduced odds of death versus standard-of-care treatment in patients with severe COVID-19. CLINICAL TRIALS REGISTRATION: NCT04292899 and EUPAS34303.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Partial 3D gene sequences of Coxsackie viruses reveal interspecies exchanges

    No full text
    The 3D region of 46 clinical Coxsackievirus strains, primarily belonging to the human enterovirus B species (HEV-B), were analyzed using nucleotide distance matrices and phylogeny software. The conclusions from previously analyzed genomic regions (VP1-2A-2B-2C) of the aforementioned strains revealed that enteroviruses' inheritance is being guided by gene adaptation among viruses of different serotypes. In this report the comparison of partial VP1 and 3D gene phylogenies presented an obvious incongruence. Moreover, the phylogeny of 3D sequences of the strains revealed an unexpected (and for the first time reported) homology among strains of different species. The observations of our study indicate that conversion events such as multiple mutations or recombination among strains and unknown donors may occur during the evolution of circulating strains, leading, probably, to viruses with altered genome and virulence. © 2007 Springer Science+Business Media, LLC

    Molecular Mechanisms of Poliovirus Variation and Evolution

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    corecore