9 research outputs found

    Techniques for the reconstruction of two-dimensional images from projections

    Get PDF
    Several plasma diagnostics techniques measure the line integrals of quantities such as densities and optical, ultraviolet, and X-ray emission. Some approaches for reconstructing the local quantities from their line integrals, based on methods utilized in computerized tomography, electron microscopy, holographic interferometry, and radio astromony, are derived and presented. Results for the special cases with source functions posessing helical symmetry--ranging from DNA to MHD--are emphasized

    Low-energy x-ray emission from magnetic-fusion plasmas

    No full text
    Complex, transient, spatially inhomogeneous tokamak plasmas require careful diagnosis. As the reactor regime is approached, soft x rays become more important as a versatile diagnostic tool and an energy-loss mechanism. Continuum emission provides a measure of electron temperature and light impurity content. Impurity lines serve as a probe for ion and electron temperature, impurity behavior, and radiative cooling. The entire spectrum yields vital information on instabilities and disruptions. The importance of impurities is illustrated by the extensive efforts toward understanding impurity production, effects, and control. Minute heavy impurity concentrations can prevent reactor ignition. Si(Li) - detector arrays give a broad overview of continuum and line x-ray emission (.3 to 50 keV) with moderate energy (200 eV) and time (50 ms) resolution. Bragg crystal and grating spectrometers provide detailed information on impurity lines with moderate to excellent (E/..delta..E = 100 to 23,000) resolving power and 1 to 50 ms time resolution. Imaging detector arrays measure rapid (approx. 10 ..mu..s) fluctuations due to MHD instabilities and probe impurity behavior and radiative cooling. Future tokamaks require more diagnostic channels to avoid spatial scanning, higher throughput for fast, single-shot diagnosis, increased spectral information per sample period via fast scanning or use of multi-element detectors with dispersive elements, and radiation shielding and hardening of detectors

    Studies of impurity behavior in TFTR

    No full text
    Central medium- and low-Z impurity concentrations and Z/sub eff/ have been measured by x-ray spectrometry in Tokamak Fusion Test Reactor discharges during three periods of operation. These were the (1) start-up period, (2) ohmic heating, and (3) ohmic heating portion of the two neutral beam periods, distinguished mainly by different vacuum vessel internal hardware and increasing plasma current and toroidal field capability. Plasma parameters spanned minor radius a = 0.41 - 0.83 m, major radius R = 2.1 - 3.1 m, current I/sub p = 0.25 - 2.0 MA, line-averaged electron density n-bar/sub e/ = 0.9 - 4.0 x 10/sup 19/ m/sup -3/, and toroidal magnetic field B/sub T/ = 1.8 - 4.0 T. The metal impurities came mostly from the limiter. At low densities titanium or nickel approached 1% of n/sub e/ during operation on a TiC-coated graphite or Inconel limiter, respectively. Lower levels of Cr, Fe, and Ni (less than or equal to0.1%) were observed with a graphite limiter at similarly low densities; these elements were removed mainly from stainless steel or Inconel hardware within the vacuum vessel during pulse discharge cleaning or plasma operation on an Inconel limiter and then deposited on the graphite limiter. Hardware closest to the graphite limiter contributed most to the deposits
    corecore